Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, CLIMATE SCIENCE (oxfordre.com/climatescience). (c) Oxford University Press USA, 2018. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 14 December 2018

Summary and Keywords

The astonishing development of computer technology since the mid-20th century has been accompanied by a corresponding proliferation in the numerical methods that have been developed to improve the simulation of atmospheric flows. This article reviews some of the numerical developments concern the ongoing improvements of weather forecasting and climate simulation models. Early computers were single-processor machines with severely limited memory capacity and computational speed, requiring simplified representations of the atmospheric equations and low resolution. As the hardware evolved and memory and speed increased, it became feasible to accommodate more complete representations of the dynamic and physical atmospheric processes. These more faithful representations of the so-called primitive equations included dynamic modes that are not necessarily of meteorological significance, which in turn led to additional computational challenges. Understanding which problems required attention and how they should be addressed was not a straightforward and unique process, and it resulted in the variety of approaches that are summarized in this article. At about the turn of the century, the most dramatic developments in hardware were the inauguration of the era of massively parallel computers, together with the vast increase in the amount of rapidly accessible memory that the new architectures provided. These advances and opportunities have demanded a thorough reassessment of the numerical methods that are most successfully adapted to this new computational environment. This article combines a survey of the important historical landmarks together with a somewhat speculative review of methods that, at the time of writing, seem to hold out the promise of further advancing the art and science of atmospheric numerical modeling.

Keywords: atmospheric models, numerical methods, nonhydrostatic models, semi-Lagrangian schemes, quasi-uniform grids, representation of topography, downscaling

Access to the complete content on Oxford Research Encyclopedia of Climate Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.