Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, CLIMATE SCIENCE (oxfordre.com/climatescience). (c) Oxford University Press USA, 2019. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 24 March 2019

Summary and Keywords

Winds within the atmospheric boundary layer (i.e., near to Earth’s surface) vary across a range of scales from a few meters and sub-second timescales (i.e., the scales of turbulent motions) to extremely large and long-period phenomena (i.e., the primary circulation patterns of the global atmosphere). Winds redistribute momentum and heat, and short- and long-term predictions of wind characteristics have applications to a number of socioeconomic sectors (e.g., engineering infrastructure). Despite its importance, atmospheric flow (i.e., wind) has been subject to less research within the climate downscaling community than variables such as air temperature and precipitation. However, there is a growing comprehension that wind storms are the single biggest source of “weather-related” insurance losses in Europe and North America in the contemporary climate, and that possible changes in wind regimes and intense wind events as a result of global climate non-stationarity are of importance to a variety of potential climate change feedbacks (e.g., emission of sea spray into the atmosphere), ecological impacts (such as wind throw of trees), and a number of other socioeconomic sectors (e.g., transportation infrastructure and operation, electricity generation and distribution, and structural design codes for buildings). There are a number of specific challenges inherent in downscaling wind including, but not limited to, the fact that it has both magnitude (wind speed) and orientation (wind direction). Further, for most applications, it is necessary to accurately downscale the full probability distribution of values at short timescales (e.g., hourly), including extremes, while the mean wind speed averaged over a month or year is of little utility. Dynamical, statistical, and hybrid approaches have been developed to downscale different aspects of the wind climate, but have large uncertainties in terms of high-impact aspects of the wind (e.g., extreme wind speeds and gusts). The wind energy industry is a key application for right-scaled wind parameters and has been a major driver of new techniques to increase fidelity. Many opportunities remain to refine existing downscaling methods, to develop new approaches to improve the skill with which the spatiotemporal scales of wind variability are represented, and for new approaches to evaluate skill in the context of wind climates.

Keywords: wind vector, wind gusts, engineering, numerical models, statistical downscaling, probability distributions, climate impacts, topographic forcing, uncertainty

Access to the complete content on Oxford Research Encyclopedia of Climate Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.