1-6 of 6 Results  for:

  • Research Methods x
  • Entrepreneurship x
Clear all

Article

Artificial Intelligence and Entrepreneurship Research  

Martin Obschonka and Christian Fisch

Advances in Artificial Intelligence (AI) are intensively shaping businesses and the economy as a whole, and AI-related research is exploding in many domains of business and management research. In contrast, AI has received relatively little attention within the domain of entrepreneurship research, while many entrepreneurship scholars agree that AI will likely shape entrepreneurship research in deep, disruptive ways. When summarizing both the existing entrepreneurship literature on AI and potential avenues for future research, the growing relevance of AI for entrepreneurship research manifests itself along two dimensions. First, AI applications in the real world establish a distinct research topic (e.g., whether and how entrepreneurs and entrepreneurial ventures use and develop AI-based technologies, or how AI can function as an external enabler that generates and enhances entrepreneurial outcomes). In other words, AI is changing the research object in entrepreneurship research. The second dimension refers to drawing on AI-based research methods, such as big data techniques or AI-based forecasting methods. Such AI-based methods open several avenues for researchers to gain new, influential insights into entrepreneurs and entrepreneurial ventures that are more difficult to assess using traditional methods. In other words, AI is changing the research methods. Given that, so far, human intelligence could not fully uncover and comprehend the secrets behind the entrepreneurial process that is so deeply embedded in uncertainty and opportunity, AI-supported research methods might achieve new breakthrough discoveries. We conclude that the field needs to embrace AI as a topic and research method more enthusiastically while maintaining the essential research standards and scientific rigor that guarantee the field’s well-being, reputation, and impact.

Article

Content and Text Analysis Methods for Organizational Research  

Rhonda K. Reger and Paula A. Kincaid

Content analysis is to words (and other unstructured data) as statistics is to numbers (also called structured data)—an umbrella term encompassing a range of analytic techniques. Content analyses range from purely qualitative analyses, often used in grounded theorizing and case-based research to reduce interview data into theoretically meaningful categories, to highly quantitative analyses that use concept dictionaries to convert words and phrases into numerical tables for further quantitative analysis. Common specialized types of qualitative content analysis include methods associated with grounded theorizing, narrative analysis, discourse analysis, rhetorical analysis, semiotic analysis, interpretative phenomenological analysis, and conversation analysis. Major quantitative content analyses include dictionary-based approaches, topic modeling, and natural language processing. Though specific steps for specific types of content analysis vary, a prototypical content analysis requires eight steps beginning with defining coding units and ending with assessing the trustworthiness, reliability, and validity of the overall coding. Furthermore, while most content analysis evaluates textual data, some studies also analyze visual data such as gestures, videos and pictures, and verbal data such as tone. Content analysis has several advantages over other data collection and analysis methods. Content analysis provides a flexible set of tools that are suitable for many research questions where quantitative data are unavailable. Many forms of content analysis provide a replicable methodology to access individual and collective structures and processes. Moreover, content analysis of documents and videos that organizational actors produce in the normal course of their work provides unobtrusive ways to study sociocognitive concepts and processes in context, and thus avoids some of the most serious concerns associated with other commonly used methods. Content analysis requires significant researcher judgment such that inadvertent biasing of results is a common concern. On balance, content analysis is a promising activity for the rigorous exploration of many important but difficult-to-study issues that are not easily studied via other methods. For these reasons, content analysis is burgeoning in business and management research as researchers seek to study complex and subtle phenomena.

Article

Entrepreneurial Teams  

Nicola Breugst

Entrepreneurial teams develop and exploit ideas in order to turn them into entrepreneurial ventures that they jointly own and manage. While these teams are crucial drivers for the success of their ventures, their work can be challenging because they operate under conditions of high autonomy, uncertainty, and interdependence. Thus, it is important to understand how entrepreneurial teams work together and jointly advance their ventures. Research has followed three overarching approaches to explore how entrepreneurial teams can succeed in their endeavors. First, one stream of research has aimed at connecting team inputs, such as team members’ experiences, to firm-level outcomes. In a second stream of research, scholars have focused on what happens within entrepreneurial teams in terms of team processes and emergent states. This approach has identified various mechanisms that translate inputs into outcomes. Third, an increasing number of studies have started to unravel the complexities that entrepreneurial teams experience in their work. Specifically, this research has considered the mutual influence of team members and has explored how teams work on their tasks and are shaped by this work. Despite these advancements, entrepreneurial team research faces numerous challenges arising from the complex interplay of team members and their ventures as well as from access to high-quality data. Because of these and other challenges, many research questions around entrepreneurial teams still need to be addressed to better understand their work. These emerging research efforts are likely to be facilitated by additional data sources, such as educational programs devoted to advancing entrepreneurial teams and modern technologies promising better access to rich data. Overall, entrepreneurial team research not only contributes to a more nuanced understanding of the entrepreneurial process but also provides support for these teams as they create and nurture their ventures.

Article

Institutional Logics  

Heather A. Haveman and Gillian Gualtieri

Research on institutional logics surveys systems of cultural elements (values, beliefs, and normative expectations) by which people, groups, and organizations make sense of and evaluate their everyday activities, and organize those activities in time and space. Although there were scattered mentions of this concept before 1990, this literature really began with the 1991 publication of a theory piece by Roger Friedland and Robert Alford. Since that time, it has become a large and diverse area of organizational research. Several books and thousands of papers and book chapters have been published on this topic, addressing institutional logics in sites as different as climate change proceedings of the United Nations, local banks in the United States, and business groups in Taiwan. Several intellectual precursors to institutional logics provide a detailed explanation of the concept and the theory surrounding it. These literatures developed over time within the broader framework of theory and empirical work in sociology, political science, and anthropology. Papers published in ten major sociology and management journals in the United States and Europe (between 1990 and 2015) provide analysis and help to identify trends in theoretical development and empirical findings. Evaluting these trends suggest three gentle corrections and potentially useful extensions to the literature help to guide future research: (1) limiting the definition of institutional logic to cultural-cognitive phenomena, rather than including material phenomena; (2) recognizing both “cold” (purely rational) cognition and “hot” (emotion-laden) cognition; and (3) developing and testing a theory (or multiple related theories), meaning a logically interconnected set of propositions concerning a delimited set of social phenomena, derived from assumptions about essential facts (axioms), that details causal mechanisms and yields empirically testable (falsifiable) hypotheses, by being more consistent about how we use concepts in theoretical statements; assessing the reliability and validity of our empirical measures; and conducting meta-analyses of the many inductive studies that have been published, to develop deductive theories.

Article

Organizational Neuroscience  

Sebastiano Massaro and Dorotea Baljević

Organizational neuroscience—a novel scholarly domain using neuroscience to inform management and organizational research, and vice versa—is flourishing. Still missing, however, is a comprehensive coverage of organizational neuroscience as a self-standing scientific field. A foundational account of the potential that neuroscience holds to advance management and organizational research is currently a gap. The gap can be addressed with a review of the main methods, systematizing the existing scholarly literature in the field including entrepreneurship, strategic management, and organizational behavior, among others.

Article

Qualitative Comparative Analysis in Business and Management Research  

Johannes Meuer and Peer C. Fiss

During the last decade, qualitative comparative analysis (QCA) has become an increasingly popular research approach in the management and business literature. As an approach, QCA consists of both a set of analytical techniques and a conceptual perspective, and the origins of QCA as an analytical technique lie outside the management and business literature. In the 1980s, Charles Ragin, a sociologist and political scientist, developed a systematic, comparative methodology as an alternative to qualitative, case-oriented approaches and to quantitative, variable-oriented approaches. Whereas the analytical technique of QCA was developed outside the management literature, the conceptual perspective underlying QCA has a long history in the management literature, in particular in the form of contingency and configurational theory that have played an important role in management theories since the late 1960s. Until the 2000s, management researchers only sporadically used QCA as an analytical technique. Between 2007 and 2008, a series of seminal articles in leading management journals laid the conceptual, methodological, and empirical foundations for QCA as a promising research approach in business and management. These articles led to a “first” wave of QCA research in management. During the first wave—occurring between approximately 2008 and 2014—researchers successfully published QCA-based studies in leading management journals and triggered important methodological debates, ultimately leading to a revival of the configurational perspective in the management literature. Following the first wave, a “second” wave—between 2014 and 2018—saw a rapid increase in QCA publications across several subfields in management research, the development of methodological applications of QCA, and an expansion of scholarly debates around the nature, opportunities, and future of QCA as a research approach. The second wave of QCA research in business and management concluded with researchers’ taking stock of the plethora of empirical studies using QCA for identifying best practice guidelines and advocating for the rise of a “neo-configurational” perspective, a perspective drawing on set-theoretic logic, causal complexity, and counterfactual analysis. Nowadays, QCA is an established approach in some research areas (e.g., organization theory, strategic management) and is diffusing into several adjacent areas (e.g., entrepreneurship, marketing, and accounting), a situation that promises new opportunities for advancing the analytical technique of QCA as well as configurational thinking and theorizing in the business and management literature. To advance the analytical foundations of QCA, researchers may, for example, advance robustness tests for QCA or focus on issues of endogeneity and omitted variables in QCA. To advance the conceptual foundations of QCA, researchers may, for example, clarify the links between configurational theory and related theoretical perspectives, such as systems theory or complexity theory, or develop theories on the temporal dynamics of configurations and configurational change. Ultimately, after a decade of growing use and interest in QCA and given the unique strengths of this approach for addressing questions relevant to management research, QCA will continue to influence research in business and management.