Content analysis is to words (and other unstructured data) as statistics is to numbers (also called structured data)—an umbrella term encompassing a range of analytic techniques. Content analyses range from purely qualitative analyses, often used in grounded theorizing and case-based research to reduce interview data into theoretically meaningful categories, to highly quantitative analyses that use concept dictionaries to convert words and phrases into numerical tables for further quantitative analysis. Common specialized types of qualitative content analysis include methods associated with grounded theorizing, narrative analysis, discourse analysis, rhetorical analysis, semiotic analysis, interpretative phenomenological analysis, and conversation analysis. Major quantitative content analyses include dictionary-based approaches, topic modeling, and natural language processing. Though specific steps for specific types of content analysis vary, a prototypical content analysis requires eight steps beginning with defining coding units and ending with assessing the trustworthiness, reliability, and validity of the overall coding. Furthermore, while most content analysis evaluates textual data, some studies also analyze visual data such as gestures, videos and pictures, and verbal data such as tone.
Content analysis has several advantages over other data collection and analysis methods. Content analysis provides a flexible set of tools that are suitable for many research questions where quantitative data are unavailable. Many forms of content analysis provide a replicable methodology to access individual and collective structures and processes. Moreover, content analysis of documents and videos that organizational actors produce in the normal course of their work provides unobtrusive ways to study sociocognitive concepts and processes in context, and thus avoids some of the most serious concerns associated with other commonly used methods. Content analysis requires significant researcher judgment such that inadvertent biasing of results is a common concern. On balance, content analysis is a promising activity for the rigorous exploration of many important but difficult-to-study issues that are not easily studied via other methods. For these reasons, content analysis is burgeoning in business and management research as researchers seek to study complex and subtle phenomena.
Article
Content and Text Analysis Methods for Organizational Research
Rhonda K. Reger and Paula A. Kincaid
Article
Longitudinal Designs for Organizational Research
James M. Diefendorff, Faith Lee, and Daniel Hynes
Longitudinal research involves collecting data from the same entities on two or more occasions. Almost all organizational theories outline a longitudinal process in which one or more variables cause a subsequent change in other variables. However, the majority of empirical studies rely on research designs that do not allow for the proper assessment of change over time or the isolation of causal effects. Longitudinal research begins with longitudinal theorizing. With this in mind, a variety of time-based theoretical concepts are helpful for conceptualizing how a variable is expected to change. This includes when variables are expected to change, the form or shape of the change, and how big the change is expected to be. To aid in the development of causal hypotheses, researchers should consider the history of the independent and dependent variables (i.e., how they may have been changing before the causal effect is examined), the causal lag between the variables (i.e., how long it takes for the dependent variable to start changing as a result of the independent variable), as well as the permanence, magnitude, and rate of the hypothesized change in the dependent variable. After hypotheses have been formulated, researchers can choose among various research designs, including experimental, concurrent or lagged correlational, or time series. Experimental designs are best suited for inferring causality, while time series designs are best suited for capturing the specific timing and form of change. Lagged correlation designs are useful for examining the direction and magnitude of change in a variable between measurements. Concurrent correlational designs are the weakest for inferring change or causality. Theory should dictate the choice of design, and designs can be modified and/or combined as needed to address the research question(s) at hand. Next, researchers should pay attention to their sample selection, the operationalization of constructs, and the frequency and timing of measures. The selected sample must be expected to experience the theorized change, and measures should be gathered as often as is necessary to represent the theorized change process (i.e., when the change occurs, how long it takes to unfold, and how long it lasts). Experimental manipulations should be strong enough to produce theorized effects and measured variables should be sensitive enough to capture meaningful differences between individuals and also within individuals over time. Finally, the analytic approach should be chosen based on the research design and hypotheses. Analyses can range from t-test and analysis of variance for experimental designs, to correlation and regression for lagged and concurrent designs, to a variety of advanced analyses for time series designs, including latent growth curve modeling, coupled latent growth curve modeling, cross-lagged modeling, and latent change score modeling. A point worth noting is that researchers sometimes label research designs by the statistical analysis commonly paired with the design. However, data generated from a particular design can often be analyzed using a variety of statistical procedures, so it is important to clearly distinguish the research design from the analytic approach.
Article
Qualitative Designs and Methodologies for Business, Management, and Organizational Research
Robert P. Gephart and Rohny Saylors
Qualitative research designs provide future-oriented plans for undertaking research. Designs should describe how to effectively address and answer a specific research question using qualitative data and qualitative analysis techniques. Designs connect research objectives to observations, data, methods, interpretations, and research outcomes. Qualitative research designs focus initially on collecting data to provide a naturalistic view of social phenomena and understand the meaning the social world holds from the point of view of social actors in real settings. The outcomes of qualitative research designs are situated narratives of peoples’ activities in real settings, reasoned explanations of behavior, discoveries of new phenomena, and creating and testing of theories.
A three-level framework can be used to describe the layers of qualitative research design and conceptualize its multifaceted nature. Note, however, that qualitative research is a flexible and not fixed process, unlike conventional positivist research designs that are unchanged after data collection commences. Flexibility provides qualitative research with the capacity to alter foci during the research process and make new and emerging discoveries.
The first or methods layer of the research design process uses social science methods to rigorously describe organizational phenomena and provide evidence that is useful for explaining phenomena and developing theory. Description is done using empirical research methods for data collection including case studies, interviews, participant observation, ethnography, and collection of texts, records, and documents.
The second or methodological layer of research design offers three formal logical strategies to analyze data and address research questions: (a) induction to answer descriptive “what” questions; (b) deduction and hypothesis testing to address theory oriented “why” questions; and (c) abduction to understand questions about what, how, and why phenomena occur.
The third or social science paradigm layer of research design is formed by broad social science traditions and approaches that reflect distinct theoretical epistemologies—theories of knowledge—and diverse empirical research practices. These perspectives include positivism, interpretive induction, and interpretive abduction (interpretive science). There are also scholarly research perspectives that reflect on and challenge or seek to change management thinking and practice, rather than producing rigorous empirical research or evidence based findings. These perspectives include critical research, postmodern research, and organization development.
Three additional issues are important to future qualitative research designs. First, there is renewed interest in the value of covert research undertaken without the informed consent of participants. Second, there is an ongoing discussion of the best style to use for reporting qualitative research. Third, there are new ways to integrate qualitative and quantitative data. These are needed to better address the interplay of qualitative and quantitative phenomena that are both found in everyday discourse, a phenomenon that has been overlooked.