1-2 of 2 Results

  • Keywords: case studies x
Clear all

Article

Rhonda K. Reger and Paula A. Kincaid

Content analysis is to words (and other unstructured data) as statistics is to numbers (also called structured data)—an umbrella term encompassing a range of analytic techniques. Content analyses range from purely qualitative analyses, often used in grounded theorizing and case-based research to reduce interview data into theoretically meaningful categories, to highly quantitative analyses that use concept dictionaries to convert words and phrases into numerical tables for further quantitative analysis. Common specialized types of qualitative content analysis include methods associated with grounded theorizing, narrative analysis, discourse analysis, rhetorical analysis, semiotic analysis, interpretative phenomenological analysis, and conversation analysis. Major quantitative content analyses include dictionary-based approaches, topic modeling, and natural language processing. Though specific steps for specific types of content analysis vary, a prototypical content analysis requires eight steps beginning with defining coding units and ending with assessing the trustworthiness, reliability, and validity of the overall coding. Furthermore, while most content analysis evaluates textual data, some studies also analyze visual data such as gestures, videos and pictures, and verbal data such as tone. Content analysis has several advantages over other data collection and analysis methods. Content analysis provides a flexible set of tools that are suitable for many research questions where quantitative data are unavailable. Many forms of content analysis provide a replicable methodology to access individual and collective structures and processes. Moreover, content analysis of documents and videos that organizational actors produce in the normal course of their work provides unobtrusive ways to study sociocognitive concepts and processes in context, and thus avoids some of the most serious concerns associated with other commonly used methods. Content analysis requires significant researcher judgment such that inadvertent biasing of results is a common concern. On balance, content analysis is a promising activity for the rigorous exploration of many important but difficult-to-study issues that are not easily studied via other methods. For these reasons, content analysis is burgeoning in business and management research as researchers seek to study complex and subtle phenomena.

Article

Eric Volmar and Kathleen M. Eisenhardt

Theory building from case studies is a research strategy that combines grounded theory building with case studies. Its purpose is to develop novel, accurate, parsimonious, and robust theory that emerges from and is grounded in data. Case research is well-suited to address “big picture” theoretical gaps and dilemmas, particularly when existing theory is inadequate. Further, this research strategy is particularly useful for answering questions of “how” through its deep and longitudinal immersion in a focal phenomenon. The process of conducting case study research includes a thorough literature review to identify an appropriate and compelling research question, a rigorous study design that involves artful theoretical sampling, rich and complete data collection from multiple sources, and a creative yet systematic grounded theory building process to analyze the cases and build emergent theory about significant phenomena. Rigorous theory building case research is fundamentally centered on strong emergent theory with precise theoretical logic and robust grounding in empirical data. Not surprisingly then, theory building case research is disproportionately represented among the most highly cited and award-winning research.