Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, CLIMATE SCIENCE (oxfordre.com/climatescience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 24 November 2020

High-Resolution Thunderstorm Modelinglocked

  • Leigh OrfLeigh OrfUniversity of Wisconsin–Madison

Summary

Since the dawn of the digital computing age in the mid-20th century, computers have been used as virtual laboratories for the study of atmospheric phenomena. The first simulations of thunderstorms captured only their gross features, yet required the most advanced computing hardware of the time. The following decades saw exponential growth in computational power that was, and continues to be, exploited by scientists seeking to answer fundamental questions about the internal workings of thunderstorms, the most devastating of which cause substantial loss of life and property throughout the world every year.

By the mid-1970s, the most powerful computers available to scientists contained, for the first time, enough memory and computing power to represent the atmosphere containing a thunderstorm in three dimensions. Prior to this time, thunderstorms were represented primarily in two dimensions, which implicitly assumed an infinitely long cloud in the missing dimension. These earliest state-of-the-art, fully three-dimensional simulations revealed fundamental properties of thunderstorms, such as the structure of updrafts and downdrafts and the evolution of precipitation, while still only roughly approximating the flow of an actual storm due computing limitations.

In the decades that followed these pioneering three-dimensional thunderstorm simulations, new modeling approaches were developed that included more accurate ways of representing winds, temperature, pressure, friction, and the complex microphysical processes involving solid, liquid, and gaseous forms of water within the storm. Further, these models also were able to be run at a resolution higher than that of previous studies due to the steady growth of available computational resources described by Moore’s law, which observed that computing power doubled roughly every two years. The resolution of thunderstorm models was able to be increased to the point where features on the order of a couple hundred meters could be resolved, allowing small but intense features such as downbursts and tornadoes to be simulated within the parent thunderstorm. As model resolution increased further, so did the amount of data produced by the models, which presented a significant challenge to scientists trying to compare their simulated thunderstorms to observed thunderstorms. Visualization and analysis software was developed and refined in tandem with improved modeling and computing hardware, allowing the simulated data to be brought to life and allowing direct comparison to observed storms. In 2019, the highest resolution simulations of violent thunderstorms are able to capture processes such as tornado formation and evolution which are found to include the aggregation of many small, weak vortices with diameters of dozens of meters, features which simply cannot not be simulated at lower resolution.

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription