1-2 of 2 Results  for:

  • Climate Systems and Climate Dynamics x
  • Hydrological Cycle x
Clear all


Katja Fennel, Tyler Cyronak, Michael DeGrandpre, David T. Ho, Goulven G. Laruelle, Damien Maher, and Julia Moriarty

The Earth’s climate is strongly affected by the partitioning of carbon between its mobile reservoirs, primarily between the atmosphere and the ocean. The distribution between the reservoirs is being massively perturbed by human activities, primarily due to fossil fuel emissions, with a range of consequences, including ocean warming and acidification, sea-level rise and coastal erosion, and changes in ocean productivity. These changes directly impact valuable habitats in many coastal regions and threaten the important services the habitats provide to mankind. Among the most productive and diverse systems are coral reefs and vegetated habitats, including saltmarshes, seagrass meadows, and mangroves. Coral reefs are particularly vulnerable to ocean warming and acidification. Vegetated habitats are receiving heightened attention for their ability to sequester carbon, but they are being impacted by land-use change, sea-level rise, and climate change. Overall, coasts play an important, but poorly quantified, role in the global cycling of carbon. Carbon reservoirs on land and in the ocean are connected through the so-called land–ocean aquatic continuum, which includes rivers, estuaries, and the coastal ocean. Terrestrial carbon from soils and rocks enters this continuum via inland water networks and is subject to transformations and exchanges with the atmosphere and sediments during its journey along the aquatic continuum. The expansive permafrost regions, comprised of ground on land and in the seabed that has been frozen for many years, are of increasing concern because they store vast amounts of carbon that is being mobilized due to warming. Quantitative estimates of these transformations and exchanges are relatively uncertain, in large part because the systems are diverse and the fluxes are highly variable in space and time, making observation at the necessary spatial and temporal coverage challenging. But despite their uncertainty, existing estimates point to an important role of these systems in global carbon cycling.


A. Johannes Dolman, Luis U. Vilasa-Abad, and Thomas A. J. Janssen

Drylands cover around 40% of the land surface on Earth and are inhabited by more than 2 billion people, who are directly dependent on these lands. Drylands are characterized by a highly variable rainfall regime and inherent vegetation-climate feedbacks that can enhance the resilience of the system, but also can amplify disturbances. In that way, the system may get locked into two alternate stable states: one relatively wet and vegetated, and the other dry and barren. The resilience of dryland ecosystems derives from a number of adaptive mechanisms by which the vegetation copes with prolonged water stress, such as hydraulic redistribution. The stochastic nature of both the vegetation dynamics and the rainfall regime is a key characteristic of these systems and affects its management in relation to the feedbacks. How the ecohydrology of the African drylands will change in the future depends on further changes in climate, human disturbances, land use, and the socioeconomic system.