101-120 of 274 Results

Article

Emma Lundberg, Caroline Gottschalk Druschke, Bridie McGreavy, Sara Randall, Tyler Quiring, Alison Fisher, Francesca Soluri, Hannah Dallas, David Hart, and Kevin Gardner

As the global imperative for sustainable energy builds and with hydroelectricity proposed as one aspect of a sustainable energy profile, public discourse reflects the complex and competing discourses and social-ecological trade-offs surrounding hydropower and dams. Is hydropower “green”? Is it “sustainable”? Is it “renewable”? Does hydropower provide a necessary alternative to fossil fuel dependence? Can the ecological consequences of hydropower be mitigated? Is this the end of the hydropower era, or is it simply the beginning of a new chapter? These pressing questions circulate through discussions about hydropower in a time of changing climate, globally declining fisheries, and aging infrastructure, lending a sense of urgency to the many decisions to be made about the future of dams. The United States and European Union (EU) saw an enduring trend of dam building from the Industrial Revolution through the mid-1970s. In these countries, contemporary media discussions about hydropower are largely focused on removing existing hydropower dams and retrofitting existing dams that offer hydropower potential. Outside of these contexts, increasing numbers of countries are debating the merits of building new large-scale hydropower dams that, in many developing countries, may have disproportionate impacts on indigenous communities that hold little political or economic power. As a result, news and social media attention to hydropower outside the United States/EU often focus on activist efforts to oppose hydropower and on its complex consequences for ecosystems and communities alike. Despite hydropower’s wide range of ecological, economic, and social trade-offs, and the increasing urgency of global conversations about hydropower, relatively little work in communication studies explores news media, social media, or public debate in the context of hydropower and dam removal. In an effort to expand the scope of communication studies, after reviewing existing work the attention here shifts to research focused more broadly on human dimensions of hydropower. These dual bodies of work focus on small and large dams from Europe to the Americas to Asia and have applied a range of methods for analyzing media coverage of the hydropower debate. Those studies are reviewed here, with an emphasis on the key themes that emerge across studies—including trust, communication, local engagement, and a call to action for interdisciplinary approaches, intertwined with conflict, conflict resolution, and social and ecological resistance. The conclusion offers an original case brief that elucidates emerging themes from our ongoing research about hydropower and dam removal in the United States, and suggests future directions for research.

Article

In comparison to fossil fuels that emit greenhouse gases, nuclear power plants are a cleaner energy source that could help to mitigate the problems of climate change. Despite this, the general public often associates nuclear energy with risks that include nuclear accidents, nuclear waste contamination, nuclear weapons proliferation, and many others. People’s experience with the 1979 Three Mile Island incident in Pennsylvania and the 1986 Chernobyl nuclear disaster in Ukraine have caused a sharp decline in public support for nuclear energy over the past few decades. In addition, media images of the 2011 Fukushima-Daichii nuclear accident are still fresh in the minds of the public. These now iconic media images and portrayals have perpetuated a perception of nuclear energy as a risky technology. Against these backdrops, scientists, communication practitioners and other key stakeholders increasingly face an uphill struggle to communicate about nuclear energy as a possible strategy for addressing climate change. Though the general public may reluctantly accept nuclear energy for climate change mitigation, research suggests that messages emphasizing the benefits of nuclear power for energy security and economic growth appear to have greater impact on public acceptance of the technology. Furthermore, public perception of nuclear energy is shaped by a host of other factors such as trust in nuclear governing institutions, knowledge, political inclinations, geographical proximity, and socio-demographic variables. At the same time, nuclear experts and the general public differ in their perceptions of risk, in nature and strength, relative to nuclear energy. Understanding these key differences between the experts and the public, and how beliefs, values, and perceptions influence public acceptance of nuclear energy is necessary to formulate effective public communication and engagement strategies.

Article

Tarla Rai Peterson and Cristi C. Horton

Transitioning to renewable energy systems requires changing the ways people interact with energy as well as technological change. This shift involves social changes that include modifications in norms, policies, and governance. Multiple sociopolitical factors shape the likelihood that solar energy will emerge as a significant component in energy systems around the world. This article describes ways climate change communication may be strategically employed to encourage substantial deployment of solar installations and other renewable energy resources as part of the innovations that contribute to transition and transformation of current energy systems. Understanding how communication may contribute to integration of more solar power into energy systems begins with examining current public awareness of and engagement with solar energy, as well as other low-carbon energy resources. With this foundation, climate change communication can contribute to research, development, and deployment of solar energy installations, by facilitating strategic alignment of solar energy with existing interests and preferences of its stakeholders. These stakeholders include elites who fear that shifting the energy system away from fossil fuels threatens their political influence and financial profits, energy workers who fear it will bring further reductions in already reduced wages, and those who perceive fossil fuels as the only alternative to opportunistic mixtures of animal waste and biofuel. Climate change communicators have the unenviable task of helping all of these groups imagine and participate in transitioning energy systems toward greater reliance on renewable energy sources, such as Sun. This article briefly describes the development and implementation solar energy technologies, and suggests how strategic communication may contribute to further implementation. It concludes with examples of differential deployment trajectories of solar energy in the Navajo Nation and Germany. These cases demonstrate that neither the endowment of natural resources nor the material energy needs of a location fully explain energy decisions. Indeed, social dimensions such as culture, economics, and governance play equally important roles. This provides numerous opportunities for climate change communicators to strategically highlight the ways that solar energy responds to immediate needs and desires, while simultaneously contributing to climate change mitigation.

Article

Some of the most significant impacts of climate change are likely to be felt in water resources management, but climate change is not the only uncertainty facing water managers and policymakers. The concept of water security has emerged to address social, economic, political, and environmental factors, as well as the physical determinants of water availability. There are significant challenges for communicating about water security under a changing climate. Water security shares many of the characteristics of climate change with regards to communication. It is a complex concept involving interactions between dynamic human and natural systems, requiring public deliberation and engagement to inform political debate and to facilitate behavioral and cultural change. Knowledge and values about water and climate change are communicated through material experiences as well as through language. Communication about water security and climate change takes many forms, which can be characterized as five key modes—policy, communication campaigns, media, cultures, and environments. More effective communication about climate change and water is needed across these different modes to support meaningful participation and deliberation in policy decisions by a wide range of stakeholders. Integrating climate change into communication campaigns about water security provides opportunities to challenge and reframe traditional formulations of the role of water in society and culture and how to manage water in human settlements, the economy, and the environment. The central challenge for communicating the impacts of climate change on water scarcity lies in the complex interactions between society, policy, technology, infrastructure, the economy, and the environment in modern water systems. Different modes of communication are useful to enable public and stakeholder engagement in understanding the issues and making decisions about how to ensure water security in a changing society and environment.

Article

Addressing climate change requires attention to a variety of communication contexts. While attention has been paid to top-down approaches aimed at individual-level behavior and the beliefs of the public at large, organizations in both the for-profit and nonprofit sectors are increasingly recognized as integral players in solving the climate change challenges that we face today. For instance, the Intergovernmental Panel on Climate Change (IPCC) characterize the commercial sector as having the highest potential to reduce emissions by 2020, suggesting that meaningful actions aimed at climate change mitigation must come from within organizations. However, the diverse nature of organizational communication poses challenges toward effective climate change communication. On the one hand, climate change communication can occur within organizations, where members’ individual behaviors and beliefs can have a significant impact on an organization’s energy consumption. On the other hand, organizations can communicate environmental issues directly to stakeholders and the public at large—though communication can be complicated by the fact that some organizations benefit from instilling doubt in the science of climate change. The complex nature of organizational-based climate change communication allows members of the for-profit and nonprofit sectors to play an important role in cultivating divergent views of climate change. Future research can help promulgate climate change-related awareness and action within organizational contexts.

Article

Communicating the impacts of climate change and possible adaptive responses is a relatively recent branch of the larger endeavor of climate change communication. This recent emergence, in large part, is driven by the fact that the impacts and policy/planning/practice responses have only recently emerged in more widespread public consciousness and discourse, and thus in scholarly treatment. This article will first describe the critical and precarious moment of when impacts and adaptation communication becomes important; it will then summarize proposed approaches to do so effectively; and discuss key challenges confronting climate change communication going forward. These challenges may well be unique in the field of communication, in that they either uniquely combine previously encountered difficulties into novel complexities or are truly unprecedented. To date, scholarship and experience in climate, environmental, or risk communication provide little guidance on how to meet these challenges of communicating effectively with diverse publics and decision makers in the face of long-term degradation of the life support system of humanity. The article will conclude with an attempt to offer research and practice directions, fit at least to serve as appropriately humble attitudes toward understanding and engaging fellow humans around the profound risks of an utterly uncertain and far-from-assured future.

Article

Karen Akerlof, Michelle Covi, and Elizabeth Rohring

Three quarters of the world’s large cities are located on coasts. As climate change causes oceans to warm and expand, and triggers vast influxes of water from melting ice sheets and glaciers, by the end of the 21st century, as many as 650 million people globally may be below sea levels or subject to recurrent flooding. Human beings have always faced threats from coastal storms and flooding, but never have so many of us and so much of our societal infrastructure been in harm’s way. With entire nations facing forced emigration, international online media are framing sea level rise as a human rights concern. Yet sea level rise suffers from generally low media attention and salience as a public issue. Coastal communities tasked with developing adaptation strategies are approaching engagement through new forms of risk visualization and models of environmental decision making. As a subfield of climate communication that addresses a variety of other anthropogenic and natural phenomena, sea level rise communication also calls upon the less politicized field of natural hazards risk communication. This review explores media analyses, audience research, and evaluation of communication outreach and engagement, finding many remaining gaps in our understanding of sea level rise communication.

Article

Melinda R. Weathers, Edward Maibach, and Matthew Nisbet

Effective public communication and engagement have played important roles in ameliorating and managing a wide range of public health problems including tobacco and substance use, cardiovascular disease, HIV/AIDS, vaccine preventable diseases, sudden infant death syndrome, and automobile injuries and fatalities. The public health community must harness what has been learned about effective public communication to alert and engage the public and policy makers about the health threats of climate change. This need is driven by three main factors. First, people’s health is already being harmed by climate change, and the magnitude of this harm is almost certain to get much worse if effective actions are not soon taken to limit climate change and to help communities successfully adapt to unavoidable changes in their climate. Therefore, public health organizations and professionals have a responsibility to inform communities about these risks and how they can be averted. Second, historically, climate change public engagement efforts have focused primarily on the environmental dimensions of the threat. These efforts have mobilized an important but still relatively narrow range of the public and policy makers. In contrast, the public health community holds the potential to engage a broader range of people, thereby enhancing climate change understanding and decision-making capacity among members of the public, the business community, and government officials. Third, many of the actions that slow or prevent climate change, and that protect human health from the harms associated with climate change, also benefit health and well-being in ways unrelated to climate change. These “cobenefits” to societal action on climate change include reduced air and water pollution, increased physical activity and decreased obesity, reduced motor-vehicle–related injuries and death, increased social capital in and connections across communities, and reduced levels of depression. Therefore, from a public health perspective, actions taken to address climate change are a “win-win” in that in addition to responsibly addressing climate change, they can help improve public health and well-being in other ways as well. Over the past half decade, U.S.-based researchers have been investigating the factors that shape public views about the health risks associated with climate change, the communication strategies that motivate support for actions to reduce these risks, and the practical implications for public health organizations and professionals who seek to effectively engage individuals and their communities. This research serves as a model for similar work that can be conducted across country settings and international publics. Until only recently, the voices of public health experts have been largely absent from the public dialogue on climate change, a dialogue that is often erroneously framed as an “economy versus the environment” debate. Introducing the public health voice into the public dialogue can help communities see the issue in a new light, motivating and promoting more thoughtful decision making.

Article

The annual United Nations Climate Change Conferences, officially called Conferences of the Parties (COPs), are the main drivers of media attention to climate change around the world. Even more so than the Rio and Rio+20 “Earth Summits” (1992 and 2012) and the meetings of the Intergovernmental Panel on Climate Change (IPCC), the COPs offer multiple access points for the communicative engagement of all kinds of stakeholders. COPs convene up to 20,000 people in one place for two weeks, including national delegations, civil society and business representatives, scientific organizations, representatives from other international organizations, as well as journalists from around the world. While intergovernmental negotiation under the auspices of the UN Framework Convention on Climate Change (UNFCCC) constitutes the core of COP business, these multifunctional events also offer arenas for civil society mobilization, economic lobbying, as well as expert communication and knowledge transfer. The media image of the COPs emerges as a product of distinct networks of coproduction constituted by journalists, professional communicators from non-governmental organizations (NGOs), and national delegations. Production structures at the COPs are relatively globalized with uniform access rules for journalists from all over the world, a few transnational news agencies dominating distribution of both basic information and news visuals, and dense localized interaction between public relations (PR) professionals and journalists. Photo opportunities created by globally coordinated environmental NGOs meet the selection of journalists much better than the visual strategies pursued by delegation spokespeople. This gives NGOs the upper hand in the visual framing contest, whereas in textual framing NGOs are sidelined and national politicians clearly dominate media coverage. The globalized production environment leads to relatively similar patterns of basic news framing in national media coverage of the COPs that reflect overarching ways of approaching the topic: through a focus on problems and victims; a perspective on civil society demands and solutions; an emphasis on conflict in negotiations; or a focus on the benefits of clean energy production. News narratives, on the other hand, give journalists from different countries more leeway in adapting COP news to national audiences’ presumed interests and preoccupations. Even after the adoption of a new global treaty at COP21 in Paris in 2015 that specifies emission reduction targets for all participating countries, the annual UN Climate Change Conferences are likely to remain in the media spotlight. Future research could look more systematically at the impact of global civil society and media in monitoring the national contributions to climate change mitigation introduced in the Paris Agreement and shoring up even more ambitious commitments needed to reach the goal of keeping global warming well below 2 degrees Celsius as compared to pre-industrial levels.

Article

Environmental organizations have been critically important in publicizing and supplying arguments about climate change, just as with the other environmental issues facing contemporary societies. In their campaigns and activism, environmental groups need to be able to make influential and widely circulated claims about the state of the natural world or the ecological impact of human activities. To do this, they have to “manage” their relationship to science. Environmentalists (in contrast to many other campaigners) are obliged to be science communicators because the convincingness of their message depends on the underlying presumption that their claims have a basis in factual, scientific accuracy. Facing the science and communication challenges of climate change, environmentalists have often found their role to be an unusual one. Unlike in most other ecological campaign areas, they have been committed to defending or bolstering mainstream scientific opinion about the nature and causes of climate change. Nonetheless, they have sought ways of distancing themselves from some of the policy and technological options apparently favored by leading scientific figures. And they have pioneered approaches based more on long-term investment strategies and normative values which, to some degree, allow them to sidestep difficulties associated with the adoption of a subordinate role in the science communication arena.

Article

Community-based adaptation (CBA) to climate change is an approach to adaptation that aims to include vulnerable people in the design and implementation of adaptation measures. The most obvious forms of CBA include simple, but accessible, technologies such as storing freshwater during flooding or raising the level of houses near the sea. It can also include more complex forms of social and economic resilience such as increasing access to a wider range of livelihoods or reducing the vulnerability of social groups that are especially exposed to climate risks. CBA has been promoted by some development nongovernmental organizations (NGOs) and international agencies as a means of demonstrating the importance of participatory and deliberative methods within adaptation to climate change, and the role of longer-term development and social empowerment as ways of reducing vulnerability to climate change. Critics, however, have argued that focusing on “community” initiatives can often be romantic and can give the mistaken impression that communities are homogeneous when in fact they contain many inequalities and social exclusions. Accordingly, many analysts see CBA as an important, but insufficient, step toward the representation of vulnerable local people in climate change policy, but that it also offers useful lessons for a broader transformation to socially inclusive forms of climate change policy, and towards seeing resilience to climate change as lying within socio-economic organization rather than in infrastructure and technology alone.

Article

Storms are characterized by high wind speeds; often large precipitation amounts in the form of rain, freezing rain, or snow; and thunder and lightning (for thunderstorms). Many different types exist, ranging from tropical cyclones and large storms of the midlatitudes to small polar lows, Medicanes, thunderstorms, or tornadoes. They can lead to extreme weather events like storm surges, flooding, high snow quantities, or bush fires. Storms often pose a threat to human lives and property, agriculture, forestry, wildlife, ships, and offshore and onshore industries. Thus, it is vital to gain knowledge about changes in storm frequency and intensity. Future storm predictions are important, and they depend to a great extent on the evaluation of changes in wind statistics of the past. To obtain reliable statistics, long and homogeneous time series over at least some decades are needed. However, wind measurements are frequently influenced by changes in the synoptic station, its location or surroundings, instruments, and measurement practices. These factors deteriorate the homogeneity of wind records. Storm indexes derived from measurements of sea-level pressure are less prone to such changes, as pressure does not show very much spatial variability as wind speed does. Long-term historical pressure measurements exist that enable us to deduce changes in storminess for more than the last 140 years. But storm records are not just compiled from measurement data; they also may be inferred from climate model data. The first numerical weather forecasts were performed in the 1950s. These served as a basis for the development of atmospheric circulation models, which were the first generation of climate models or general-circulation models. Soon afterward, model data was analyzed for storm events and cyclone-tracking algorithms were programmed. Climate models nowadays have reached high resolution and reliability and can be run not just for the past, but also for future emission scenarios which return possible future storm activity.

Article

Content analysis is one of the most frequently used methods in climate change communication research. Studies implementing content analysis investigate how climate change is presented in mass media or other communication content. Quantitative content analysis develops a standardized codebook to code content systematically, which then allows for statistical analysis. Qualitative analysis relies on interpretative methods and a closer reading of the material, often using hermeneutic approaches and taking linguistic features of the text more into account than quantitative analysis. While quantitative analysis—particularly if conducted automatically—can comprise larger samples, qualitative analysis usually entails smaller samples, as it is more detailed. Different types of material—whether online content, campaign material, or climate change imagery—bring about different challenges when studied through content analysis that need to be considered when drawing samples of the material for content analysis. To evaluate the quality of a content analysis measures for reliability and validity are used. Key themes in content analyses of climate change communication are the media’s attention to climate change and the different points of view on global warming as an issue being present in the media coverage. Challenges for content analysis as a method for assessing climate change communication arise from the lack of comparability of the various studies that exist. Multimodal approaches are developed to better adhere to both textual and visual content simultaneously in content analyses of climate change communication.

Article

William Joseph Gutowski and Filippo Giorgi

Regional climate downscaling has been motivated by the objective to understand how climate processes not resolved by global models can influence the evolution of a region’s climate and by the need to provide climate change information to other sectors, such as water resources, agriculture, and human health, on scales poorly resolved by global models but where impacts are felt. There are four primary approaches to regional downscaling: regional climate models (RCMs), empirical statistical downscaling (ESD), variable resolution global models (VARGCM), and “time-slice” simulations with high-resolution global atmospheric models (HIRGCM). Downscaling using RCMs is often referred to as dynamical downscaling to contrast it with statistical downscaling. Although there have been efforts to coordinate each of these approaches, the predominant effort to coordinate regional downscaling activities has involved RCMs. Initially, downscaling activities were directed toward specific, individual projects. Typically, there was little similarity between these projects in terms of focus region, resolution, time period, boundary conditions, and phenomena of interest. The lack of coordination hindered evaluation of downscaling methods, because sources of success or problems in downscaling could be specific to model formulation, phenomena studied, or the method itself. This prompted the organization of the first dynamical-downscaling intercomparison projects in the 1990s and early 2000s. These programs and several others following provided coordination focused on an individual region and an opportunity to understand sources of differences between downscaling models while overall illustrating the capabilities of dynamical downscaling for representing climatologically important regional phenomena. However, coordination between programs was limited. Recognition of the need for further coordination led to the formation of the Coordinated Regional Downscaling Experiment (CORDEX) under the auspices of the World Climate Research Programme (WCRP). Initial CORDEX efforts focused on establishing and performing a common framework for carrying out dynamically downscaled simulations over multiple regions around the world. This framework has now become an organizing structure for downscaling activities around the world. Further efforts under the CORDEX program have strengthened the program’s scientific motivations, such as assessing added value in downscaling, regional human influences on climate, coupled ocean­–land–atmosphere modeling, precipitation systems, extreme events, and local wind systems. In addition, CORDEX is promoting expanded efforts to compare capabilities of all downscaling methods for producing regional information. The efforts are motivated in part by the scientific goal to understand thoroughly regional climate and its change and by the growing need for climate information to assist climate services for a multitude of climate-impacted sectors.

Article

Scientific agreement on climate change has strengthened over the past few decades, with around 97% of publishing climate scientists agreeing that human activity is causing global warming. While scientific understanding has strengthened, a small but persistent proportion of the public actively opposes the mainstream scientific position. A number of factors contribute to this rejection of scientific evidence, with political ideology playing a key role. Conservative think tanks, supported with funding from vested interests, have been and continue to be a prolific source of misinformation about climate change. A major strategy by opponents of climate mitigation policies has been to cast doubt on the level of scientific agreement on climate change, contributing to the gap between public perception of scientific agreement and the 97% expert consensus. This “consensus gap” decreases public support for mitigation policies, demonstrating that misconceptions can have significant societal consequences. While scientists need to communicate the consensus, they also need to be aware of the fact that misinformation can interfere with the communication of accurate scientific information. As a consequence, neutralizing the influence of misinformation is necessary. Two approaches to neutralize misinformation involve refuting myths after they have been received by recipients (debunking) or preemptively inoculating people before they receive misinformation (prebunking). Research indicates preemptive refutation or “prebunking” is more effective than debunking in reducing the influence of misinformation. Guidelines to practically implement responses (both preemptive and reactive) can be found in educational research, cognitive psychology, and a branch of psychological research known as inoculation theory. Synthesizing these separate lines of research yields a coherent set of recommendations for educators and communicators. Clearly communicating scientific concepts, such as the scientific consensus, is important, but scientific explanations should be coupled with inoculating explanations of how that science can be distorted.

Article

The 2°C target for global warming had been under severe scrutiny in the run-up to the climate negotiations in Paris in 2015 (COP21). Clearly, with a remaining carbon budget of 470–1,020 GtCO2eq from 2015 onwards for a 66% probability of stabilizing at concentration levels consistent with remaining below 2°C warming at the end of the 21st century and yearly emissions of about 40 GtCO2 per year, not much room is left for further postponing action. Many of the low stabilization pathways actually resort to the extraction of CO2 from the atmosphere (known as negative emissions or Carbon Dioxide Removal [CDR]), mostly by means of Bioenergy with Carbon Capture and Storage (BECCS): if the biomass feedstock is produced sustainably, the emissions would be low or even carbon-neutral, as the additional planting of biomass would sequester about as much CO2 as is generated during energy generation. If additionally carbon capture and storage is applied, then the emissions balance would be negative. Large BECCS deployment thus facilitates reaching the 2°C target, also allowing for some flexibility in other sectors that are difficult to decarbonize rapidly, such as the agricultural sector. However, the large reliance on BECCS has raised uneasiness among policymakers, the public, and even scientists, with risks to sustainability being voiced as the prime concern. For example, the large-scale deployment of BECCS would require vast areas of land to be set aside for the cultivation of biomass, which is feared to conflict with conservation of ecosystem services and with ensuring food security in the face of a still growing population. While the progress that has been made in Paris leading to an agreement on stabilizing “well below 2°C above pre-industrial levels” and “pursuing efforts to limit the temperature increase to 1.5°C” was mainly motivated by the extent of the impacts, which are perceived to be unacceptably high for some regions already at lower temperature increases, it has to be taken with a grain of salt: moving to 1.5°C will further shrink the time frame to act and BECCS will play an even bigger role. In fact, aiming at 1.5°C will substantially reduce the remaining carbon budget previously indicated for reaching 2°C. Recent research on the biophysical limits to BECCS and also other negative emissions options such as Direct Air Capture indicates that they all run into their respective bottlenecks—BECCS with respect to land requirements, but on the upside producing bioenergy as a side product, while Direct Air Capture does not need much land, but is more energy-intensive. In order to provide for the negative emissions needed for achieving the 1.5°C target in a sustainable way, a portfolio of negative emissions options needs to minimize unwanted effects on non–climate policy goals.

Article

Rasmus Fensholt, Cheikh Mbow, Martin Brandt, and Kjeld Rasmussen

In the past 50 years, human activities and climatic variability have caused major environmental changes in the semi-arid Sahelian zone and desertification/degradation of arable lands is of major concern for livelihoods and food security. In the wake of the Sahel droughts in the early 1970s and 1980s, the UN focused on the problem of desertification by organizing the UN Conference on Desertification (UNCOD) in Nairobi in 1976. This fuelled a significant increase in the often alarmist popular accounts of desertification as well as scientific efforts in providing an understanding of the mechanisms involved. The global interest in the subject led to the nomination of desertification as focal point for one of three international environmental conventions: the UN Convention to Combat Desertification (UNCCD), emerging from the Rio conference in 1992. This implied that substantial efforts were made to quantify the extent of desertification and to understand its causes. Desertification is a complex and multi-faceted phenomenon aggravating poverty that can be seen as both a cause and a consequence of land resource depletion. As reflected in its definition adopted by the UNCCD, desertification is “land degradation in arid, semi-arid[,] and dry sub-humid areas resulting from various factors, including climate variation and human activities” (UN, 1992). While desertification was seen as a phenomenon of relevance to drylands globally, the Sahel-Sudan region remained a region of specific interest and a significant amount of scientific efforts have been invested to provide an empirically supported understanding of both climatic and anthropogenic factors involved. Despite decades of intensive research on human–environmental systems in the Sahel, there is no overall consensus about the severity of desertification and the scientific literature is characterized by a range of conflicting observations and interpretations of the environmental conditions in the region. Earth Observation (EO) studies generally show a positive trend in rainfall and vegetation greenness over the last decades for the majority of the Sahel and this has been interpreted as an increase in biomass and contradicts narratives of a vicious cycle of widespread degradation caused by human overuse and climate change. Even though an increase in vegetation greenness, as observed from EO data, can be confirmed by ground observations, long-term assessments of biodiversity at finer spatial scales highlight a negative trend in species diversity in several studies and overall it remains unclear if the observed positive trends provide an environmental improvement with positive effects on people’s livelihood.

Article

Individuals, both within and between different countries, vary substantially in the extent to which they view climate change as a risk. What could explain such variation in climate change risk perception around the world? Climate change is relatively unique as a risk in the sense that it is difficult for people to experience directly or even detect on a purely perceptual or sensory level. In fact, research across the social and behavioral sciences has shown that although people might correctly perceive some changes in long-term climate conditions, psychological factors are often much more influential in determining how the public perceives the risk of climate change. Indeed, decades of research has shown that cognitive, affective, social, and cultural factors all greatly influence the public’s perception of risk, and that these factors, in turn, often interact with each other in complex ways. Yet, although a wide variety of cognitive, experiential, socio-cultural and demographic characteristics have all proven to be relevant, are there certain factors that systematically stand out in explaining and predicting climate change risk perception around the world? And even if so, what do we mean, exactly, by the term “risk perception” and to what extent does the way in which risk perception is measured influence the outcome? Last but certainly not least, how important is public concern about climate change in determining people’s level of behavioral engagement and policy-support for the issue?

Article

Dramatic climate changes have occurred in the Baltic Sea region caused by changes in orbital movement in the earth–sun system and the melting of the Fennoscandian Ice Sheet. Added to these longer-term changes, changes have occurred at all timescales, caused mainly by variations in large-scale atmospheric pressure systems due to competition between the meandering midlatitude low-pressure systems and high-pressure systems. Here we follow the development of climate science of the Baltic Sea from when observations began in the 18th century to the early 21st century. The question of why the water level is sinking around the Baltic Sea coasts could not be answered until the ideas of postglacial uplift and the thermal history of the earth were better understood in the 19th century and periodic behavior in climate related time series attracted scientific interest. Herring and sardine fishing successes and failures have led to investigations of fishery and climate change and to the realization that fisheries themselves have strongly negative effects on the marine environment, calling for international assessment efforts. Scientists later introduced the concept of regime shifts when interpreting their data, attributing these to various causes. The increasing amount of anoxic deep water in the Baltic Sea and eutrophication have prompted debate about what is natural and what is anthropogenic, and the scientific outcome of these debates now forms the basis of international management efforts to reduce nutrient leakage from land. The observed increase in atmospheric CO2 and its effects on global warming have focused the climate debate on trends and generated a series of international and regional assessments and research programs that have greatly improved our understanding of climate and environmental changes, bolstering the efforts of earth system science, in which both climate and environmental factors are analyzed together. Major achievements of past centuries have included developing and organizing regular observation and monitoring programs. The free availability of data sets has supported the development of more accurate forcing functions for Baltic Sea models and made it possible to better understand and model the Baltic Sea–North Sea system, including the development of coupled land–sea–atmosphere models. Most indirect and direct observations of the climate find great variability and stochastic behavior, so conclusions based on short time series are problematic, leading to qualifications about periodicity, trends, and regime shifts. Starting in the 1980s, systematic research into climate change has considerably improved our understanding of regional warming and multiple threats to the Baltic Sea. Several aspects of regional climate and environmental changes and how they interact are, however, unknown and merit future research.

Article

Nelya Koteyko and Dimitrinka Atanasova

Discourse analysis is an interdisciplinary field of inquiry that has been increasingly used by climate change communication scholars since the late 1990s. In its broadest sense, discourse analysis is the study of the social through analysis of language, including face-to-face talk, written media texts, and documents, as well as images and symbols. Studies in this field encompass a broad range of theories and analytic approaches for investigating meaning. Due to its focus on the sociocultural and political context in which text and talk occur, discourse analysis is pertinent to the concerns of climate change communication scholars as it has the potential to reveal the ideological dimensions of stakeholder beliefs and the dissemination of climate change-related information in the media. In contrast to studies under the rubric of frame analysis and survey-based analyses of public perceptions, this research places emphasis on the situated study of different stakeholders involved in climate change communication. Here attention is paid not only to the content being communicated (e.g., themes) but also to the linguistic forms and contexts that shape language and interaction. Both of these require an understanding of audiences’ cultural, political, and socioeconomic conditions. From the participatory perspective, discourse analysis can therefore illuminate the moral, ethical, and cultural dimensions of the climate change issue.