1-4 of 4 Results  for:

  • History of Climate Science x
  • Climate Systems and Climate Dynamics x
Clear all

Article

Classic paradigms describing meteorological phenomena and climate have changed dramatically over the last half-century. This is particularly true for the continent of Africa. Our understanding of its climate is today very different from that which prevailed as recently as the 1960s or 1970s. This article traces the development of relevant paradigms in five broad areas: climate and climate classification, tropical atmospheric circulation, tropical rain-bearing systems, climatic variability and change, and land surface processes and climate. One example is the definition of climate. Originally viewed as simple statistical averages, it is now recognized as an environmental variable with global linkages, multiple timescales of variability, and strong controls via earth surface processes. As a result of numerous field experiments, our understanding of tropical rainfall has morphed from the belief in the domination by local thunderstorms to recognition of vast systems on regional to global scales. Our understanding of the interrelationships with land surface processes has also changed markedly. The simple Charney hypothesis concerning albedo change and the related concept of desertification have given way to a broader view of land–atmosphere interaction. In summary, there has been a major evolution in the way we understand climate, climatic variability, tropical rainfall regimes and rain-bearing systems, and potential human impacts on African climate. Each of these areas has evolved in complexity and understanding, a result of an explosive growth in research and the availability of such investigative tools as satellites, computers, and numerical models.

Article

Saji N. Hameed

Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.

Article

West Africa is among the most populated regions of the world, and it is predicted to continue to have one of the fastest growing populations in the first half of the 21st century. More than 35% of its GDP comes from agricultural production, and a large fraction of the population faces chronic hunger and malnutrition. Its dependence on rainfed agriculture is compounded by extreme variations in rainfall, including both droughts and floods, which appear to have become more frequent. As a result, it is considered a region highly vulnerable to future climate changes. At the same time, CMIP5 model projections for the next century show a large spread in precipitation estimates for West Africa, making it impossible to predict even the direction of future precipitation changes for this region. To improve predictions of future changes in the climate of West Africa, a better understanding of past changes, and their causes, is needed. Long climate and vegetation reconstructions, extending back to 5−8 Ma, demonstrate that changes in the climate of West Africa are paced by variations in the Earth’s orbit, and point to a direct influence of changes in low-latitude seasonal insolation on monsoon strength. However, the controls on West African precipitation reflect the influence of a complex set of forcing mechanisms, which can differ regionally in their importance, especially when insolation forcing is weak. During glacial intervals, when insolation changes are muted, millennial-scale dry events occur across North Africa in response to reorganizations of the Atlantic circulation associated with high-latitude climate changes. On centennial timescales, a similar response is evident, with cold conditions during the Little Ice Age associated with a weaker monsoon, and warm conditions during the Medieval Climate Anomaly associated with wetter conditions. Land surface properties play an important role in enhancing changes in the monsoon through positive feedback. In some cases, such as the mid-Holocene, the feedback led to abrupt changes in the monsoon, but the response is complex and spatially heterogeneous. Despite advances made in recent years, our understanding of West African monsoon variability remains limited by the dearth of continuous, high- resolution, and quantitative proxy reconstructions, particularly from terrestrial sites.

Article

In the years following the Second World War, the U.S. government played a prominent role in the support of basic scientific research. The National Science Foundation (NSF) was created in 1950 with the primary mission of supporting fundamental science and engineering, excluding medical sciences. Over the years, the NSF has operated from the “bottom up,” keeping close track of research around the United States and the world while maintaining constant contact with the research community to identify ever-moving horizons of inquiry. In the 1950s the field of meteorology was something of a poor cousin to the other branches of science; forecasting was considered more of trade than a discipline founded on sound theoretical foundations. Realizing the importance of the field to both the economy and national security, the NSF leadership made a concerted effort to enhance understanding of the global atmospheric circulation. The National Center for Atmospheric Research (NCAR) was established to complement ongoing research efforts in academic institutions; it has played a pivotal role in providing observational and modeling tools to the emerging cadre of researchers in the disciplines of meteorology and atmospheric sciences. As understanding of the predictability of the coupled atmosphere-ocean system grew, the field of climate science emerged as a natural outgrowth of meteorology, oceanography, and atmospheric sciences. The NSF played a leading role in the implementation of major international programs such as the International Geophysical Year (IGY), the Global Weather Experiment, the World Ocean Circulation Experiment (WOCE) and Tropical Ocean Global Atmosphere (TOGA). Through these programs, understanding of the coupled climate system comprising atmosphere, ocean, land, ice-sheet, and sea ice greatly improved. Consistent with its mission, the NSF supported projects that advanced fundamental knowledge of forcing and feedbacks in the coupled atmosphere-ocean-land system. Research projects have included theoretical, observational, and modeling studies of the following: the general circulation of the stratosphere and troposphere; the processes that govern climate; the causes of climate variability and change; methods of predicting climate variations; climate predictability; development and testing of parameterization of physical processes; numerical methods for use in large-scale climate models; the assembly and analysis of instrumental and/or modeled climate data; data assimilation studies; and the development and use of climate models to diagnose and simulate climate variability and change. Climate scientists work together on an array of topics spanning time scales from the seasonal to the centennial. The NSF also supports research on the natural evolution of the earth’s climate on geological time scales with the goal of providing a baseline for present variability and future trends. The development of paleoclimate data sets has resulted in longer term data for evaluation of model simulations, analogous to the evaluation using instrumental observations. This has enabled scientists to create transformative syntheses of paleoclimate data and modeling outcomes in order to understand the response of the longer-term and higher magnitude variability of the climate system that is observed in the geological records. The NSF will continue to address emerging issues in climate and earth-system science through balanced investments in transformative ideas, enabling infrastructure and major facilities to be developed.