1-2 of 2 Results  for:

  • Climate of Africa x
  • Forecasting x
Clear all

Article

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century. The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems. The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening. Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.

Article

The Sahel of Africa has been identified as having the strongest land–atmosphere (L/A) interactions on Earth. The Sahelian L/A interaction studies started in the late 1970s. However, due to controversies surrounding the early studies, in which only a single land parameter was considered in L/A interactions, the credibility of land-surface effects on the Sahel’s climate has long been challenged. Using general circulation models and regional climate models coupled with biogeophysical and dynamic vegetation models as well as applying analyses of satellite-derived data, field measurements, and assimilation data, the effects of land-surface processes on West African monsoon variability, which dominates the Sahel climate system at intraseasonal, seasonal, interannual, and decadal scales, as well as mesoscale, have been extensively investigated to realistically explore the Sahel L/A interaction: its effects and the mechanisms involved. The Sahel suffered the longest and most severe drought on the planet in the 20th century. The devastating environmental and socioeconomic consequences resulting from drought-induced famines in the Sahel have provided strong motivation for the scientific community and society to understand the causes of the drought and its impact. It was controversial and under debate whether the drought was a natural process, mainly induced by sea-surface temperature variability, or was affected by anthropogenic activities. Diagnostic and modeling studies of the sea-surface temperature have consistently demonstrated it exerts great influence on the Sahel climate system, but sea-surface temperature is unable to explain the full scope of the Sahel climate variability and the later 20th century’s drought. The effect of land-surface processes, especially land-cover and land-use change, on the drought have also been extensively investigated. The results with more realistic land-surface models suggest land processes are a first-order contributor to the Sahel climate and to its drought during the later 1960s to the 1980s, comparable to sea surface temperature effects. The issues that caused controversies in the early studies have been properly addressed in the studies with state-of-the-art models and available data. The mechanisms through which land processes affect the atmosphere are also elucidated in a number of studies. Land-surface processes not only affect vertical transfer of radiative fluxes and heat fluxes but also affect horizontal advections through their effect on the atmospheric heating rate and moisture flux convergence/divergence as well as horizontal temperature gradients.