1-20 of 304 Results

Article

Adaptation to Current and Future Climate in Pastoral Communities Across Africa  

Edna Wangui

Pastoralists around the world are exposed to climate change and increasing climate variability. Various downscaled regional climate models in Africa support community reports of rising temperatures as well as changes in the seasonality of rainfall and drought. In addition to climate, pastoralists have faced a second exposure to unsupportive policy environments. Dating back to the colonial period, a lack of knowledge about pastoralism and a systemic marginalization of pastoral communities influenced the size and nature of government investments in pastoral lands. National governments prioritized farming communities and failed to pay adequate attention to drylands and pastoral communities. The limited government interventions that occurred were often inconsistent with contemporary realities of pastoralism and pastoral communities. These included attempts at sedentarization and modernization, and in other ways changing the priorities and practices of pastoral communities. The survival of pastoral communities in Africa in the context of this double exposure has been a focus for scholars, development practitioners, as well as national governments in recent years. Scholars initially drew attention to pastoralists’ drought-coping strategies, and later examined the multiple ways in which pastoralists manage risk and exploit unpredictability. It has been learned that pastoralists are rational land managers whose experience with variable climate has equipped them with the skills needed for adaptation. Pastoralists follow several identifiable adaptation paths, including diversification and modification of their herds and herding strategies; adoption of livelihood activities that did not previously play a permanent role; and a conscious decision to train the next generation for nonpastoral livelihoods. Ongoing government interventions around climate change still prioritize cropping over herding. Sometimes, such nationally supported adaptation plans can undermine community-based adaptation practices, autonomously evolving within pastoral communities. Successful adaptation hinges on recognition of the value of autonomous adaptation and careful integration of such adaptation with national plans.

Article

Adaptive Governance  

Ronald D. Brunner and Amanda H. Lynch

Adaptive governance is defined by a focus on decentralized decision-making structures and procedurally rational policy, supported by intensive natural and social science. Decentralized decision-making structures allow a large, complex problem like global climate change to be factored into many smaller problems, each more tractable for policy and scientific purposes. Many smaller problems can be addressed separately and concurrently by smaller communities. Procedurally rational policy in each community is an adaptation to profound uncertainties, inherent in complex systems and cognitive constraints, that limit predictability. Hence planning to meet projected targets and timetables is secondary to continuing appraisal of incremental steps toward long-term goals: What has and hasn’t worked compared to a historical baseline, and why? Each step in such trial-and-error processes depends on politics to balance, if not integrate, the interests of multiple participants to advance their common interest—the point of governance in a free society. Intensive science recognizes that each community is unique because the interests, interactions, and environmental responses of its participants are multiple and coevolve. Hence, inquiry focuses on case studies of particular contexts considered comprehensively and in some detail. Varieties of adaptive governance emerged in response to the limitations of scientific management, the dominant pattern of governance in the 20th century. In scientific management, central authorities sought technically rational policies supported by predictive science to rise above politics and thereby realize policy goals more efficiently from the top down. This approach was manifest in the framing of climate change as an “irreducibly global” problem in the years around 1990. The Intergovernmental Panel on Climate Change (IPCC) was established to assess science for the Conference of the Parties (COP) to the U.N. Framework Convention on Climate Change (UNFCCC). The parties negotiated the Kyoto Protocol that attempted to prescribe legally binding targets and timetables for national reductions in greenhouse gas emissions. But progress under the protocol fell far short of realizing the ultimate objective in Article 1 of the UNFCCC, “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference in the climate system.” As concentrations continued to increase, the COP recognized the limitations of this approach in Copenhagen in 2009 and authorized nationally determined contributions to greenhouse gas reductions in the Paris Agreement in 2015. Adaptive governance is a promising but underutilized approach to advancing common interests in response to climate impacts. The interests affected by climate, and their relative priorities, differ from one community to the next, but typically they include protecting life and limb, property and prosperity, other human artifacts, and ecosystem services, while minimizing costs. Adaptive governance is promising because some communities have made significant progress in reducing their losses and vulnerability to climate impacts in the course of advancing their common interests. In doing so, they provide field-tested models for similar communities to consider. Policies that have worked anywhere in a network tend to be diffused for possible adaptation elsewhere in that network. Policies that have worked consistently intensify and justify collective action from the bottom up to reallocate supporting resources from the top down. Researchers can help realize the potential of adaptive governance on larger scales by recognizing it as a complementary approach in climate policy—not a substitute for scientific management, the historical baseline.

Article

Aerosols and Climate  

Bjørn H. Samset

Among the factors that affect the climate, few are as diverse and challenging to understand as aerosols. Minute particles suspended in the atmosphere, aerosols are emitted through a wide range of natural and industrial processes, and are transported around the globe by winds and weather. Once airborne, they affect the climate both directly, through scattering and absorption of solar radiation, and indirectly, through their impact on cloud properties. Combining all their effects, anthropogenic changes to aerosol concentrations are estimated to have had a climate impact over the industrial era that is second only to CO2. Their atmospheric lifetime of only a few days, however, makes their climate effects substantially different from those of well-mixed greenhouse gases. Major aerosol types include sea salt, dust, sulfate compounds, and black carbon—or soot—from incomplete combustion. Of these, most scatter incoming sunlight back to space, and thus mainly cool the climate. Black carbon, however, absorbs sunlight, and therefore acts as a heating agent much like a greenhouse gas. Furthermore, aerosols can act as cloud condensation nuclei, causing clouds to become whiter—and thus more reflecting—further cooling the surface. Black carbon is again a special case, acting to change the stability of the atmosphere through local heating of the upper air, and also changing the albedo of the surface when it is deposited on snow and ice, for example. The wide range of climate interactions that aerosols have, and the fact that their distribution depends on the weather at the time and location of emission, lead to large uncertainties in the scientific assessment of their impact. This in turn leads to uncertainties in our present understanding of the climate sensitivity, because while aerosols have predominantly acted to oppose 20th-century global warming by greenhouse gases, the magnitude of aerosol effects on climate is highly uncertain. Finally, aerosols are important for large-scale climate events such as major volcanoes, or the threat of nuclear winter. The relative ease with which they can be produced and distributed has led to suggestions for using targeted aerosol emissions to counteract global warming—so-called climate engineering.

Article

Affective Imagery, Risk Perceptions, and Climate Change Communication  

Anthony Leiserowitz and Nicholas Smith

Affective imagery, or connotative meanings, play an important role in shaping public risk perceptions, policy support, and broader responses to climate change. These simple “top-of-mind” associations and their related affect help reveal how diverse audiences understand and interpret global warming. And as a relatively simple set of measures, they are easily incorporated into representative surveys, making it possible to identify, measure, and monitor how connotative meanings are distributed throughout a population and how they change over time. Affective image analysis can help identify distinct interpretive communities of like-minded individuals who share their own set of common meanings and interpretations. The images also provide a highly sensitive measure of changes in public discourse. As scientists, political elites, advocates, and the media change the frames, images, icons, and emotions they use to communicate climate change, they can influence the interpretations of the larger public. Likewise, as members of the public directly or vicariously experience specific events or learn more about climate risks, they construct their own connotative meanings, which can in turn influence larger currents of public discourse. This article traces the development of affective imagery analysis, reviews the studies that have implemented it, examines how affective images influence climate change risk perceptions and policy support, and charts several future directions of research.

Article

African Biomass Burning and Its Atmospheric Impacts  

Charles Ichoku

Biomass burning is widespread in sub-Saharan Africa, which harbors more than half of global biomass burning activity. These African open fires are mostly induced by humans for various purposes, ranging from agricultural land clearing and residue burning to deforestation. They affect a wide variety of land ecosystems, including forests, woodlands, shrublands, savannas, grasslands, and croplands. Satellite observations show that fires are distributed almost equally between the northern and southern hemispheres of sub-Saharan Africa, with a dipole-type annual distribution pattern, peaking during the dry (winter) season of either hemisphere. The widespread nature of African biomass burning and the tremendous amounts of particulate and gas-phase emissions the fires produce have been shown to affect a variety of processes that ultimately impact the earth’s atmospheric composition and chemistry, air quality, water cycle, and climate in a significant manner. However, there is still a high level of uncertainty in the quantitative characterization of biomass burning, and its emissions and impacts in Africa and globally. These uncertainties can be potentially alleviated through improvements in the spatial and temporal resolutions of satellite observations, numerical modeling and data assimilation, complemented by occasional field campaigns. In addition, there is great need for the general public, policy makers, and funding organizations within Africa to recognize the seriousness of uncontrolled biomass burning and its potential consequences, in order to bring the necessary human and financial resources to bear on essential policies and scientific research activities that can effectively address the threats posed by the combined adverse influences of the changing climate, biomass burning, and other environmental challenges in sub-Saharan Africa.

Article

Agenda Building, Narratives, and Attention Cycles in Climate Change News Coverage  

James Shanahan

Social scientists and media critics have often been befuddled about how and why news coverage of important issues takes the shapes that it does. While some issues seem to behave according to well-established patterns, others don’t. The issue of climate change is one that has been explained in numerous ways, often from a cyclical perspective. This perspective suggests that news attention naturally varies up and down, often cued by certain focusing events that draw attention for a time, after which attention wanes again. These observations are usually matched with the perspective that attention should normatively not be cyclical, that the issue is one that deserves continuous attention until it is resolved. All of this is in the context that there are significant doubts about the objective role of newsmakers in this process. Climate change is an issue that has cut across a period of news evolution in which objectively neutral news has become even less prominent than it once was, if it ever was. News outlets with specific ideological agendas, a plethora of bloggers and websites with an axe to grind, and a variety of conspiracy theories about climate have obscured how news can even hope to cover this issue. With “belief” in climate change now becoming an important token of how one identifies oneself politically, we can wonder whether the issue can ever receive a fair hearing from a scientific perspective.

Article

Agricultural Extension and Climate Change Communication  

Linda S. Prokopy, Wendy-Lin Bartels, Gary Burniske, and Rebecca Power

Agricultural extension has evolved over the last 200 years from a system of top-down dissemination of information from experts to farmers to a more complex system, in which a diversity of knowledge producers and farmers work together to co-produce information. Following a detailed history of the evolution of extension in the United States, this article describes an example from the southeastern United States that illustrates how innovative institutional arrangements enable land-grant universities to actively engage farmers and extension agents as key partners in the knowledge generation process. A second U.S. example shows that private retailers are more influential than extension in influencing large-scale farmers’ farm management decisions in the midwestern United States. However, these private retailers trust extension as a source of climate change information and thus partnerships are important for extension. Nongovernmental organizations (NGOs) have been an important source of extension services for smallholder farmers across the world, and examples from the NGO CARE indicate that a participatory and facilitative approach works well for climate change communication. Collectively, these examples emphasize that the role of agricultural extension in climate change communication is essential in the context of both developed and developing countries and with both smallholder farmers and large-scale farmers. These case studies illustrate the effectiveness of a co-production approach, the importance of partners and donors, and the changing landscape of agricultural extension delivery.

Article

A History of Institutional Meteorology in the Philippines, 1865–1972  

Kerby C. Alvarez

Meteorology, as a science that has colonial roots, was cleverly devised to advance and increase the capabilities of colonies to be more beneficial for the state and the public. Its character as a public science was a by-product of a profusion of necessities—commercial demands , disaster mitigation mechanism, and scholarly pursuits. The Philippine experience in the development of meteorology is reflected in the institutional progress of the Observatorio Meteorológico de Manila (OMM) and the Philippine Weather Bureau (PWB). Originating as an atmospheric observation facility of the Jesuit professors at a burgeoning secondary school in Manila in 1865, it was absorbed and expanded by various state regimes in the Philippines for governmental programs and activities. The OMM’s and PWB’s scientific activities offered a form of public engagement and service under the pretext of various state projects instigated by the Spanish, American, and Japanese regimes, as well as the postwar-era Filipino governments. Essentially, these regimes used meteorological science to harness the benefits of modern weather forecasting to serve imperial programs in various fields—from trade, shipping, and agriculture to civilizational and war efforts. In congruence with the period of birth and formation of the Philippine nation, the institutional development of meteorological science accorded further intricacies to an already convoluted national narrative. The project of a state bureaucracy with proactive Filipino presence and participation coincided with the development of meteorology as a primordial agent of scientific development.

Article

Alpine Climate Change Derived From Instrumental Measurements  

Yuri Brugnara

The European Alps have experienced remarkable climate changes since the beginning of the Industrial Age. In particular, mean air temperature in the region increased at a greater rate than global temperature, leading to the loss of nearly half of the glaciated area and to important changes in the ecosystems. Spanning 1,200 km in length, with peaks reaching over 4,000 meters above sea level (m asl), the Alps have a critical influence over the weather in most of Europe and separate the colder oceanic/continental climate in the north from the milder Mediterranean climate in the south. The climatic differences between the main slopes are reflected into different climate changes—whereas the northern slope got wetter, the southern slope got drier. The consequences of these climate changes are not confined to the Alpine region. Being located in the center of Europe, the Alps provide water and electricity for over 100 million people. Alpine run-off is a major contributor to the total discharge of several major European rivers such as the Rhine, the Rhône, the Po, and the Danube. Therefore, climate change in the Alps can have significant economic impacts on a continental scale. Their convenient geographical position allowed scientists to study the Alpine climate since the very beginning of the instrumental era. The first instrumental meteorological observations in an Alpine valley were taken as early as the mid-17th century, soon followed by measurements at higher elevations. Continuous records are available since the late 18th century, providing invaluable information on climate variability to modern-day researchers. Although there is overwhelming evidence of a dominant anthropogenic influence on the observed temperature increase, the causes of the changes that affected other variables have, in many cases, not been sufficiently investigated by the scientific community.

Article

Alpine Ice Cores as Climate and Environmental Archives  

Pascal Bohleber

The European Alps feature a unique situation with the densest network of long-term instrumental climate observations and anthropogenic emission sources located in the immediate vicinity of glaciers suitable for ice core studies. To archive atmospheric changes in an undisturbed sequence of firn and ice layers, ice core drilling sites require temperatures low enough to minimize meltwater percolation. In the Alps, this implies a restriction to the highest summit glaciers of comparatively small horizontal and vertical extension (i.e., with typical ice thickness not much exceeding 100 m). As a result, Alpine ice cores offer either high-resolution or long-term records, depending on the net snow accumulation regime of the drilling site. High-accumulation Alpine ice cores have been used with great success to study the anthropogenic influence on aerosol-related atmospheric impurities over the last 100 years or so. However, respective long-term reconstructions (i.e., substantially exceeding the instrumental era) from low-accumulation sites remain comparatively sparse. Accordingly, deciphering Alpine ice cores as long-term climate records deserves special emphasis. Certain conditions must exist for Alpine ice cores to serve as climate archives, and this is important in particular regarding the challenges and achievements that have significance for ice cores from other mountain areas: (a) a reliable chronology is the fundamental prerequisite for interpreting any ice core proxy time series. Advances in radiometric ice dating and annual layer counting offer the tools to crucially increase dating precision in the preinstrumental era. (b) Glacier flow effects and spatio-seasonal snow deposition variability challenge linking the ice core proxy signals to the respective atmospheric variability (e.g., of temperature, mineral dust, and impurity concentrations). Here, assistance comes from combining multiple ice cores from one site and from complementary meteorological, glaciological, and geophysical surveys. (c) As Alpine ice cores continue to advance their contribution to Holocene climate science, exploring the link to instrumental, historical, and other natural climate archives gains increasing importance.

Article

Analog Models for Empirical-Statistical Downscaling  

María Laura Bettolli

Global climate models (GCM) are fundamental tools for weather forecasting and climate predictions at different time scales, from intraseasonal prediction to climate change projections. Their design allows GCMs to simulate the global climate adequately, but they are not able to skillfully simulate local/regional climates. Consequently, downscaling and bias correction methods are increasingly needed and applied for generating useful local and regional climate information from the coarse GCM resolution. Empirical-statistical downscaling (ESD) methods generate climate information at the local scale or with a greater resolution than that achieved by GCM by means of empirical or statistical relationships between large-scale atmospheric variables and the local observed climate. As a counterpart approach, dynamical downscaling is based on regional climate models that simulate regional climate processes with a greater spatial resolution, using GCM fields as initial or boundary conditions. Various ESD methods can be classified according to different criteria, depending on their approach, implementation, and application. In general terms, ESD methods can be categorized into subgroups that include transfer functions or regression models (either linear or nonlinear), weather generators, and weather typing methods and analogs. Although these methods can be grouped into different categories, they can also be combined to generate more sophisticated downscaling methods. In the last group, weather typing and analogs, the methods relate the occurrence of particular weather classes to local and regional weather conditions. In particular, the analog method is based on finding atmospheric states in the historical record that are similar to the atmospheric state on a given target day. Then, the corresponding historical local weather conditions are used to estimate local weather conditions on the target day. The analog method is a relatively simple technique that has been extensively used as a benchmark method in statistical downscaling applications. Of easy construction and applicability to any predictand variable, it has shown to perform as well as other more sophisticated methods. These attributes have inspired its application in diverse studies around the world that explore its ability to simulate different characteristics of regional climates.

Article

Anticipatory Governance of Climate Engineering  

Daniel Barben and Nils Matzner

“Anticipatory governance” has gained recognition as an approach dedicated to shaping research and development early on, that is, long before technological applications become available or societal impacts visible. It combines future-oriented technology assessment, interdisciplinary knowledge integration, and public engagement. This article places debates about the anticipatory governance of climate engineering (CE) into the context of earlier efforts to render the governance of science, emerging technologies, and society more forward-looking, inclusive, and deliberative. While each field of science and technology raises specific governance challenges—which may also differ across time and space—climate engineering seems rather unique because it relates to what many consider the most significant global challenge: climate change. The article discusses how and why CE has become subject to change in the aftermath of the Paris Agreement of 2015, leading to a more open and more fragmented situation. In the beginning, CE served as an umbrella term covering a broad range of approaches which differ in terms of risks, opportunities, and uncertainties. After Paris, carbon dioxide removal has been normalized as an approach that expands mitigation options and, thus, should no longer be attributed to CE, while solar radiation management has remained marginalized as a CE approach. The 1.5 °C special report by the Intergovernmental Panel on Climate Change is indicative for this shift. The governance of CE unfolds in a context where the assessment of climate change and its impacts provides the context for assessing the potentials and limitations of CE. Since one cannot clearly predict the future as it is nonlinear and multiple anticipation may mark a promising way of thinking about future realities in the contemporary. Due to its indeterminacy the future may also become subject to “politics of anticipation.” As uncertainty underlies not only ways of thinking the future but also ways of acting upon it, anticipatory governance may provide valuable guidance on how to approach challenging presents and futures in a reflexive way. In consequence, anticipatory governance is not only aware of risks, uncertainties, and forms of ignorance but is also ready to adjust and realign positions, following the changing knowledge and preferences in the worlds of science, policymaking and politics, or civil society. This article will discuss notions of anticipatory governance as developed in various institutional contexts concerned with assessing, funding, regulating, or conducting research and innovation. It will explore how notions of anticipatory governance have been transferred to the field of CE, in attempts at either shaping the course of CE-related research and innovation or at critically observing various CE-related governance endeavors by evaluating their capacities in anticipatorily governing research and technology development. By working in a double epistemic status, “anticipatory governance” exhibits useful characteristics in both practical and analytical ways. Considering the particular significance of climate change, approaches to anticipatory governance of CE need to be scaled up and reframed, from guiding research and innovation to meeting a global challenge, from creating capable ensembles in research and innovation to facilitating societal transformation toward carbon neutrality.

Article

The Arts and Humanities in Climate Change Engagement  

Julia B. Corbett and Brett Clark

The communication strategy of simply sharing more scientific information has not effectively engaged and connected people to climate change in ways that facilitate understanding and encourage action. In part, this is because climate change is a so-called wicked problem, given that it is socially complex, has many interdependencies, and lacks simple solutions. For many people, climate change is generally seen as something abstract and distant—something that they know about, but do not “feel.” The arts and humanities can play an important role in disrupting the social and cultural worldviews that filter climate information and separate the public from the reality of climate change. Whether it is the visual arts, dance, theater, literature, comedy, or film, the arts and humanities present engaging stories, corporally sensed and felt experiences, awareness of interdependency with the world, emotional meanings, and connection with place. Climate stories, especially those based on lived experiences, offer distinct ways to engage a variety of senses. They allow the “invisibility” of climate change to be seen, felt, and imagined in the past, present, and future. They connect global issues to conditions close to home and create space to grieve and experience loss. They encourage critical reflection of existing social structures and cultural and moral norms, thus facilitating engagement beyond the individual level. The arts and humanities hold great potential to help spur necessary social and cultural change, but research is needed on their reach and efficacy.

Article

Atmosphere, Economy, and Their Holistic Framings in the Twentieth Century and Beyond  

Robert Luke Naylor

Despite apocalyptic discourse surrounding climate change since the 1970s, climate and weather have a longer history of being conceptualized as useful entities in the Anglophone world. The adversities of the Great Depression and hopes for a better postwar future led to climate being designated as a limitless resource—an object integral to the national economy that organizations, most notably governments, could draw upon to operate more effectively, especially against adversity. With a resurgence of neo-Malthusian perspectives in the 1970s, fears over resource scarcity reframed atmospheric resources as being strictly limited, and the concurrent rise of environmentalism challenged the idea that the atmosphere should be seen as a useful entity for industry. Instead, the economy–atmosphere relationship increasingly began to be framed through climate impact assessments, which analyzed the ability of climatic changes to perturb human systems. In addition, economic fragmentation, marketization, and privatization challenged the concept of national resources, meaning that by the end of the 1980s, the idea of the atmospheric resource had fallen from vogue. In the context of such marketization, the meteorological applications industry experienced rapid growth, leading some to advocate seeing the sector as a weather forecasting enterprise to encourage a renewed integrated perspective on weather impacts, forecasts, and policy. In contrast, in 2015, scholars identified how climate change has been reconstructed as a market transition by political and business elites, as climate change came to be seen as a market opportunity that was disconnected from goings-on in the material atmosphere. This disconnection can be seen as the culmination of a long process of conceptually disintegrating economy from the material atmosphere that began with the dismantling of the atmospheric resource concept.

Article

Atmospheric Blocking in Observation and Models  

Stefano Tibaldi and Franco Molteni

The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas. Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere. Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics. When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors. Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.

Article

Atmospheric Heating Source Over the Tibetan Plateau and Its Regional Climate Impact  

Guoxiong Wu, Anmin Duan, and Yimin Liu

With an average elevation of 4 kilometers, a combined area of more than 2.5 million square kilometers, and a variety of complicated landscapes, the Tibetan Plateau (TP) constitutes the highest and largest terrain on earth. The Tibetan and Iranian Plateau (TIP) form a dynamically coupled system that exerts a tremendous impact on the regional and global climate. The TIP’s geographic location in the subtropics of central and eastern Asia, along with its altitude, size, and steep terrain on the southern and eastern slopes, make this climate impact particularly unique. In winter, the TIP reacts to the impinging subtropical westerly flow, producing a strong negative mountain torque and forming a prominent stationary circulation dipole with a huge anticyclone circulation to its north and cyclone circulation to its south in the tropics. A specific winter climate pattern over Asia is thus formed. Due to its high elevation, the total mass of the air column over the TP is much smaller than over the neighboring regions, as the solar radiation heating in this region is more efficient. The atmospheric heating source (AHS) over the TP is negative in winter and strongly positive in summer. On this elevated terrain there is also a large number of intersecting isentropic surfaces in the lower troposphere. Along its sloping surfaces, the cooling in winter causes the near-surface air to slide downward and diverge toward its surroundings, whereas the surface heating of the slope in summer results in near-surface air ascent, causing the surrounding air to converge toward the plateau. More significantly, due to its huge size, the surface-sensible heating of the TIP produces a large-scale surface cyclonic circulation and works as an immense sensible-heat-driven air pump (SHAP), which transports abundant water vapor from ocean to land to support the Asian continental monsoon. In addition, the plateau’s heating produces a subtropical monsoonal meridional circulation and creates a large-scale air ascent background in subtropical Asia. Therefore, the Asian monsoon is the consequence of the seasonal change not only in land-sea thermal contrast but also in the thermal forcing of large-scale mountains. Since the 1980s, the near surface atmospheric warming amplitude over the TP has grown much larger than the global mean, and the changes in climate and AHS over the TP have already influenced the water resources, ecosystem services, mountain hazards, and livelihoods across and around the TP. Understanding the climate effect of the TP’s AHS is not only a key issue for climate dynamics, but can also help us to recognize the thermal forcing of other large-scale topographies, such as the Rockies and Andes Mountains, on the global climate in the framework of land-air-sea interaction. This article will introduce the effect of the TP’s AHS on the regional climate, with emphasis on the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM), in terms of the climatology, intra-seasonal oscillation, interannual variability, and decadal change. Controversies, challenges, and future perspectives on this topic will also be presented. Its informative content can be used as a professional reference for research scientists and professionals in the fields of meteorology, climate dynamics, environmental science, geography and geology, hydrology, and paleo-climatology. Most material presented here can also be helpful for non-specialists.

Article

Audience Segmentation and Climate Change Communication  

Donald W. Hine, Wendy J. Phillips, Aaron B. Driver, and Mark Morrison

Scientists and policy makers face significant challenges when attempting to engage the public about climate change. An important first step is to understand the number and nature of the audiences one plans to target—a process known as audience segmentation. Segmentation involves identifying, within an audience or target population, homogenous subgroups that share similar demographic and/or psychographic profiles. After segmenting an audience, climate change communicators can target their messages based on the unique characteristics of each subgroup. For example, to stimulate engagement and behavior change, messages aimed at audiences that are skeptical about climate change may require different content and framing than messages aimed at audiences already deeply concerned about climate change. The notion of matching message content to audience characteristics has a long history, dating back to the Ancient Greeks. More recently, audience segmentation has played a central role in targeted advertising and also social marketing, which uses marketing principles to help “sell” ideas and behaviors that benefit society. Applications to climate change communication are becoming more common, with major segmentation and communication initiatives being implemented across the globe. Messages crafted to meet the needs of specific audience segments are more likely to be read, understood, and recalled than generic ones, and are also more likely to change behavior. However, despite these successes, the approach has not been uniformly embraced. Controversies have emerged related to the cost effectiveness of segmentation strategies, choice of segmentation variables, potential effects related to social stigmatization, whether segmentation encourages shallow (as opposed to deep) change, the extent to which segments are “found” as opposed to socially constructed by researchers, and whether interindividual differences are best conceptualized in terms of categories or dimensions.

Article

Baltic Sea Level: Past, Present, and Future  

Ralf Weisse and Birgit Hünicke

A multitude of geophysical processes contribute to and determine variations and changes in the height of the Baltic Sea water surface. These processes act on a broad range of characteristic spatial and timescales ranging from a few seconds to millennia. On very long timescales, the northern parts of the Baltic are uplifting due to the still ongoing visco-elastic response of the Earth to the last deglaciation, and mean sea level is decreasing in these regions. Over centuries, the Baltic Sea responds to changes in global and North Atlantic mean sea level. Processes affecting global mean sea level, such as warming of the world ocean or melting of glaciers and of polar ice sheets, do have an imprint on Baltic Sea levels. Over decades, variations and changes in atmospheric circulation affect transport through the Danish Straits connecting the Baltic and North seas. As a result, the amount of water in the Baltic Sea and the height of the sea level vary. Similarly, atmospheric variability on shorter timescales down to a few days cause shorter period variations of transport through the Danish Straits and Baltic Sea level. On even shorter timescales, the Danish Straits act as a low pass filter, and high frequency variations of the water surface within the Baltic Sea such as storm surges, wind waves, or seiches are solely caused internally. All such processes have undergone considerable variations and changes in the past. Similarly, they are expected to show variations and changes in the future and across a broad range of scales, leaving their imprint on observed and potential future Baltic Sea level and its variability.

Article

Behavioral Science and Climate Policy  

Michael Howlett and Stuti Rawat

Behavioral science consists of the systematic analysis of processes underlying human behavior through experimentation and observation, drawing on knowledge, research, and methods from a variety of fields such as economics, psychology, and sociology. Because policymaking involves efforts to modify or alter the behavior of policy-takers and centers on the processes of decision-making in government, it has always been concerned with behavioral psychology. Classic studies of decision-making in the field derived their frameworks and concepts from psychology, and the founder of policy sciences, Harold Lasswell, was himself trained as a behavioral political scientist. Hence, it should not be surprising that the use of behavioral science is a feature of many policy areas, including climate change policy. This is given extra emphasis, however, because climate change policymaking and the rise of climate change as a policy issue coincides with a resurgence in behaviorally inspired policy analysis and design brought about by the development of behavioral economics. Thus efforts to deal with climate change have come into being at a time when behavioral governance has been gaining traction worldwide under the influence of works by, among others, Kahneman and Tversky, Thaler, and Sunstein. Such behavioral governance studies have focused on the psychological and cognitive behavioral processes in individuals and collectives, in order to inform, design, and implement different modes of governing. They have been promoted by policy scholars, including many economists working in the area who prefer its insights to those put forward by classical or neoclassical economics. In the context of climate change policy, behavioral science plays two key roles—through its use of behaviorally premised policy instruments as new modes of public policy being used or proposed to be used, in conjunction with traditional climate change policy tools; and as a way of understanding some of the barriers to compliance and policy design encountered by governments in combating the “super wicked problem” of climate change. Five kinds of behavioral tools have been found to be most commonly used in relation to climate change policy: provision of information, use of social norms, goal setting, default rules, and framing. A large proportion of behavioral tools has been used in the energy sector, because of its importance in the context of climate change action and the fact that energy consumption is easy to monitor, thereby facilitating impact assessment.

Article

Carbon, Coast, and the Climate  

Katja Fennel, Tyler Cyronak, Michael DeGrandpre, David T. Ho, Goulven G. Laruelle, Damien Maher, and Julia Moriarty

The Earth’s climate is strongly affected by the partitioning of carbon between its mobile reservoirs, primarily between the atmosphere and the ocean. The distribution between the reservoirs is being massively perturbed by human activities, primarily due to fossil fuel emissions, with a range of consequences, including ocean warming and acidification, sea-level rise and coastal erosion, and changes in ocean productivity. These changes directly impact valuable habitats in many coastal regions and threaten the important services the habitats provide to mankind. Among the most productive and diverse systems are coral reefs and vegetated habitats, including saltmarshes, seagrass meadows, and mangroves. Coral reefs are particularly vulnerable to ocean warming and acidification. Vegetated habitats are receiving heightened attention for their ability to sequester carbon, but they are being impacted by land-use change, sea-level rise, and climate change. Overall, coasts play an important, but poorly quantified, role in the global cycling of carbon. Carbon reservoirs on land and in the ocean are connected through the so-called land–ocean aquatic continuum, which includes rivers, estuaries, and the coastal ocean. Terrestrial carbon from soils and rocks enters this continuum via inland water networks and is subject to transformations and exchanges with the atmosphere and sediments during its journey along the aquatic continuum. The expansive permafrost regions, comprised of ground on land and in the seabed that has been frozen for many years, are of increasing concern because they store vast amounts of carbon that is being mobilized due to warming. Quantitative estimates of these transformations and exchanges are relatively uncertain, in large part because the systems are diverse and the fluxes are highly variable in space and time, making observation at the necessary spatial and temporal coverage challenging. But despite their uncertainty, existing estimates point to an important role of these systems in global carbon cycling.