1-5 of 5 Results  for:

  • Climate Impact: Human Health x
Clear all

Article

African Biomass Burning and Its Atmospheric Impacts  

Charles Ichoku

Biomass burning is widespread in sub-Saharan Africa, which harbors more than half of global biomass burning activity. These African open fires are mostly induced by humans for various purposes, ranging from agricultural land clearing and residue burning to deforestation. They affect a wide variety of land ecosystems, including forests, woodlands, shrublands, savannas, grasslands, and croplands. Satellite observations show that fires are distributed almost equally between the northern and southern hemispheres of sub-Saharan Africa, with a dipole-type annual distribution pattern, peaking during the dry (winter) season of either hemisphere. The widespread nature of African biomass burning and the tremendous amounts of particulate and gas-phase emissions the fires produce have been shown to affect a variety of processes that ultimately impact the earth’s atmospheric composition and chemistry, air quality, water cycle, and climate in a significant manner. However, there is still a high level of uncertainty in the quantitative characterization of biomass burning, and its emissions and impacts in Africa and globally. These uncertainties can be potentially alleviated through improvements in the spatial and temporal resolutions of satellite observations, numerical modeling and data assimilation, complemented by occasional field campaigns. In addition, there is great need for the general public, policy makers, and funding organizations within Africa to recognize the seriousness of uncontrolled biomass burning and its potential consequences, in order to bring the necessary human and financial resources to bear on essential policies and scientific research activities that can effectively address the threats posed by the combined adverse influences of the changing climate, biomass burning, and other environmental challenges in sub-Saharan Africa.

Article

Climate and Health across Africa  

Benjamin F. Zaitchik

Humans have understood the importance of climate to human health since ancient times. In some cases, the connections appear to be obvious: a flood can cause drownings, a drought can lead to crop failure and hunger, and temperature extremes pose a risk of exposure. In other cases, the connections are veiled by complex or unobserved processes, such that the influence of climate on a disease epidemic or a conflict can be difficult to diagnose. In reality, however, all climate impacts on health are mediated by some combination of natural and human dynamics that cause individuals or populations to be vulnerable to the effects of a variable or changing climate. Understanding and managing negative health impacts of climate is a global challenge. The challenge is greater in regions with high poverty and weak institutions, however, and Africa is a continent where the health burden of climate is particularly acute. Observed climate variability in the modern era has been associated with widespread food insecurity, significant epidemics of infectious disease, and loss of life and livelihoods to climate extremes. Anthropogenic climate change is a further stress that has the potential to increase malnutrition, alter the distribution of diseases, and bring more frequent hydrological and temperature extremes to many regions across the continent. Skillful early warning systems and informed climate change adaptation strategies have the potential to enhance resilience to short-term climate variability and to buffer against negative impacts of climate change. But effective warnings and projections require both scientific and institutional capacity to address complex processes that are mediated by physical, ecological, and societal systems. Here the state of understanding climate impacts on health in Africa is summarized through a selective review that focuses on food security, infectious disease, and extreme events. The potential to apply scientific understanding to early warning and climate change projection is also considered.

Article

Climatic Determinism and the Conceptualization of the Tropics in British India  

Rituparna Ray Chowdhury

The geographic concept of tropicality emerged as an operative tool in the colonizing efforts of the European powers in the 18th and 19th centuries. Since the colonizing encounters proved fatal for many Europeans in South Asia, particularly during the initial phase of settlement when their mortality rate was far higher than that of the natives, attempts were made to understand the impact of the tropical climate upon the Western constitution. Based on the ancient Hippocratic doctrines of humoral pathology and the narrative of Enlightenment thinkers, colonial medical professionals endeavored to determine a correlation between health and environment. According to Western classical understanding, health was dependent upon various climatic and environmental factors. With the prevailing perception that the oppressive climatic conditions of India and its hazardous disease-infused environs were inimical to the survival of the Anglo-Indians in South Asia, the ancient concept of climatic determinism was revitalized during the colonial period. This theory, which argued that people tended to resemble the dominant characteristics of the climate in which they lived, proved convenient at a time of aggressive expansion, when moral grounds were required for justifying the Western designs of conquest and exploitation. Explanations like environmental determinism encouraged conjectures that the tropical climate of India bred only “lazy” and “degenerative” people, in contrast to the “manly” and “strong” individuals of the temperate zone. This notion, with its insidious veneer of rationality, facilitated a justification of the ideology of imperial colonization, while also discouraging permanent settlement of the European colonizers upon Indian soil.

Article

Health Problems in the European Alps Under Climate Change  

Lisbeth Weitensfelder, Hans-Peter Hutter, Kathrin Lemmerer, Michael Poteser, Peter Wallner, and Hanns Moshammer

The Alpine region in Central Europe and its populations in principle face the same types of threats to their health due to climate change as those in other parts of the world. But special geographical and climatic aspects of that region warrant closer and special examination of the connections between health and climate change in the Alps. These include small-scale variation, in some instances steep mountain slopes, and, above all, a larger-than-average increase in near-surface temperatures. To that end, there are main pathways between climate change and health: “Direct effects” describe rather short-term health effects of extreme weather events. Such events have occurred in the past, and therefore ample epidemiological evidence is available for the assessment of their impact. With climate change, such extreme events are predicted to change in frequency and intensity. “Indirect effects” refer to a more complex pathway where long-term changes of various natural and anthropogenic systems in reaction or adaptation to climate change exert adverse or sometimes also beneficial impacts on health. Such systems include ecosystems in which, for example, the prevalence of disease vectors or the allergenicity of pollen will change. But agriculture and forestry or the built environment are also affected by climate change and in turn affect the health of people. “Distant effects” are also rather indirect in nature. But in this pathway, changes due to climate change in other parts of the world affect the health in the Alpine region. Increasing migration into the Alpine region and changing migration patterns are important examples of this pathway. In some instances, most importantly regarding mental health, there is still a need for more studies focusing on the Alpine environments. But apart from these especially understudied topics, as the climate crisis evolves, there is generally a need for continuous research on the health effects of climate change and the potential of health promotion to create co-benefits.

Article

Meteorology, Climate, and Health in the United States  

Elaine LaFay

Unraveling the connections between meteorology, climate, and health—all broadly defined—is an endeavor that cuts across an astonishing array of times, places, and peoples. How societies pursue and interpret these connections is deeply tied to sociocultural, environmental, and political context. In the United States, meteorological beliefs rested on shared assumptions rooted in ancient traditions that linked prevailing environmental and climatic conditions with human health. By the 17th century, the steadfast collection of meteorological phenomena in weather journals was tethered to medical knowledge as well as the pursuit of agricultural, business, and shipping ventures. Environmental conditions were routinely theorized as causes for epidemics and individual sickness (or cure). As meteorology changed from a practice of data collection to a science over the 18th and 19th centuries, its medical arm branched into the interlocking fields of medical meteorology, medical climatology, and medical topography. However, even with the rise of new meteorological technologies and methods, older ways of knowing the weather persisted alongside formal medical theories of health and place, and tacit, embodied knowledge was never fully supplanted by instrumental data collection. The science of meteorology also grew into being as a tool of empire. Imperial states established networks of meteorological stations to collect weather data to further colonial ambitions and foster politically charged geographic imaginaries of colonized places and peoples. But theorizing the relationship between climate and health was not restricted to white men of science. Black intellectuals and subaltern peoples held radically different cosmologies of climate and challenged prevailing essentialist theories of climate and health throughout the 19th and 20th centuries. In the 20th century, scientists situated changing climates as a key dimension for disease patterns and demographic transition more broadly. As historians make use of the increasingly sophisticated methods of historical climatology, past climate reconstruction has sparked new questions on how environmental conditions have both enabled and constrained human action during climate—and political, infrastructural—disasters. New interdisciplinary approaches to the climate crisis have further offered ways to bridge the disconnect between climate science and medical practice that emerged during the 20th century.