Coasts are those regions of the world where the land has an impact on the state of the sea, and that part of the land is in turn affected by the sea. This land–sea interaction may take various forms—geophysical, biological, chemical, sociocultural, and economic. Coasts are conditioned by specific regional conditions. These unique characteristics result, in heavily fragmented regional and disciplinary research agendas, among them geographers, meteorologists, oceanographers, coastal engineers, and a variety of social and cultural sciences.
Coasts are regions where the effects and risks of climate impact societal and ecological life. Such occurrences as coastal flooding, storms, saltwater intrusion, invasive species, declining fish stocks, and coastal retreat and morphological change are challenging natural resource managers and local governments to mitigate these impacts. Societies are confronted with the challenge of dealing with these changes and hazards by developing appropriate cultural practices and technical measures.
Key aspects and concepts of these dimensions are presented here and will be examined in more detail in the future to expand on their characteristics and significance.
Article
Climate and Coast: Overview and Introduction
Hans von Storch, Katja Fennel, Jürgen Jensen, Kristy A. Lewis, Beate Ratter, Torsten Schlurmann, Thomas Wahl, and Wenyan Zhang
Article
Regional Sea Level
Thomas Wahl and Sönke Dangendorf
Sea level rise leads to an increase in coastal flooding risk for coastal communities throughout the world. Changes in mean sea level are caused by a combination of human-induced global warming and natural variability and are not uniform throughout the world. The key processes leading to mean sea level rise and its variability in space and time are the melting of land-based ice and changes in the hydrological cycle; thermal expansion due to warming oceans; changes in winds, ocean currents, and atmospheric pressure; and, when focusing on the relative changes between the land and the ocean, any vertical motion of the land itself (subsidence or uplift). In addition to the change in mean sea level, which is the main climatic driver for changes in coastal flooding risk in most regions, additional changes in tides, storm surges, or waves can further exacerbate, or offset, the negative effects of mean sea level rise. Hence, it is important to analyze, understand, and ultimately project the changes in all of these sea level components individually and combined, including the complex interactions between them. Advances in sea level science in the 21st century along with new and extended observational records including in situ and remote sensing measurements have paved the path to being able to provide better and more localized information to stakeholders, particularly in the context of making decisions about coastal adaptation to protect the prosperity of coastal communities and ecosystems.