1-11 of 11 Results  for:

  • Climate Systems and Climate Dynamics x
Clear all

Article

Aerosols and Climate  

Bjørn H. Samset

Among the factors that affect the climate, few are as diverse and challenging to understand as aerosols. Minute particles suspended in the atmosphere, aerosols are emitted through a wide range of natural and industrial processes, and are transported around the globe by winds and weather. Once airborne, they affect the climate both directly, through scattering and absorption of solar radiation, and indirectly, through their impact on cloud properties. Combining all their effects, anthropogenic changes to aerosol concentrations are estimated to have had a climate impact over the industrial era that is second only to CO2. Their atmospheric lifetime of only a few days, however, makes their climate effects substantially different from those of well-mixed greenhouse gases. Major aerosol types include sea salt, dust, sulfate compounds, and black carbon—or soot—from incomplete combustion. Of these, most scatter incoming sunlight back to space, and thus mainly cool the climate. Black carbon, however, absorbs sunlight, and therefore acts as a heating agent much like a greenhouse gas. Furthermore, aerosols can act as cloud condensation nuclei, causing clouds to become whiter—and thus more reflecting—further cooling the surface. Black carbon is again a special case, acting to change the stability of the atmosphere through local heating of the upper air, and also changing the albedo of the surface when it is deposited on snow and ice, for example. The wide range of climate interactions that aerosols have, and the fact that their distribution depends on the weather at the time and location of emission, lead to large uncertainties in the scientific assessment of their impact. This in turn leads to uncertainties in our present understanding of the climate sensitivity, because while aerosols have predominantly acted to oppose 20th-century global warming by greenhouse gases, the magnitude of aerosol effects on climate is highly uncertain. Finally, aerosols are important for large-scale climate events such as major volcanoes, or the threat of nuclear winter. The relative ease with which they can be produced and distributed has led to suggestions for using targeted aerosol emissions to counteract global warming—so-called climate engineering.

Article

Atmospheric Blocking in Observation and Models  

Stefano Tibaldi and Franco Molteni

The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas. Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere. Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics. When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors. Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.

Article

Climate Change and Carbon Cycle Feedbacks  

Pierre Friedlingstein

Climate and carbon cycle are tightly coupled on many time scales, from the interannual to the multimillennial. Observation always shows a positive feedback between climate and the carbon cycle: elevated atmospheric CO2 leads to warming, but warming is expected to further release of carbon to the atmosphere, enhancing the atmospheric CO2 increase. Earth system models do represent these climate–carbon cycle feedbacks, always simulating a positive feedback over the 21st century; that is, climate change will lead to loss of carbon from the land and ocean reservoirs. These processes partially offset the increases in land and ocean carbon sinks caused by rising atmospheric CO2. As a result, more of the emitted anthropogenic CO2 will remain in the atmosphere. There is, however, a large uncertainty on the magnitude of this feedback. Recent studies now help to reduce this uncertainty. On short, interannual, time scales, El Niño years record larger-than-average atmospheric CO2 growth rate, with tropical land ecosystems being the main drivers. These climate–carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. On a longer, centennial, time scale, the variability of atmospheric CO2 found in records of the last millennium can be used to constrain the overall global carbon cycle response to climate. These independent methods confirm that the climate–carbon cycle feedback is positive, but probably more consistent with the lower end of the comprehensive models range, excluding very large climate–carbon cycle feedbacks.

Article

Climate Change Scenarios and African Climate Change  

Kerry H. Cook

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century. The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems. The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening. Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.

Article

Syukuro Manabe: Recipient of Nobel Prize in Physics 2021  

Antonio Navarra

Syukuro Manabe was awarded the Nobel Prize in Physics in 2021 for his work on climate modeling. The Prize recognizes an exceptional career that pioneered a new area of the scientific enterprise revealing the power of numerical simulations and methods for advancing scientific discovery and producing new knowledge. Manabe contributed decisively to the creation of the modern scientific discipline of climate science through numerical modeling, stressing clarity of ideas and simplicity of approach. He described in no uncertain terms the role of greenhouse gases in the atmosphere and the impact of changes in the radiation balance of the atmosphere caused by the anthropogenic increase of such gases, and he revealed the role of water vapor in the greenhouse effect. He also understood the importance of including all the components of the climate system (the oceans, sea ice, and land surface) to reach a comprehensive treatment of the mechanisms of climate in a general circulation model, paving the way to the modern earth system models and the establishment of climate modeling as a leading scientific discipline.

Article

The Genesis and Evolution of European Union Framework Programmes on Climate Science  

Elisabeth Lipiatou and Anastasios Kentarchos

Although the first European Union Framework Programme (FP) for research and technological development was created in 1984, it was the second FP (FP2) in 1987 that devoted resources to climatological research for the first time. The start of FP2 coincided with the establishment of the Intergovernmental Panel on Climate Change in 1988, aimed at providing a comprehensive assessment on the state of knowledge of the science of climate change. FP-funded research was not an end in itself but a means for the European Union (EU) to achieve common objectives based on the principle of cross-border research cooperation and coordination to reduce fragmentation and effectively tackle common challenges. Since 1987, climate science has been present in all nine FPs (as of 2023) following an evolutionary process as goals, priority areas, and financial and implementation instruments have constantly changed to adapt to new needs. A research- and technology-oriented Europe was gradually created including in the area of climate science. There has historically been a strong intrinsic link between research and environmental and climate policies. Climate science under the FPs, focusing initially on oceans, the carbon cycle, and atmospheric processes, has increased tremendously both in scope and scale, encompassing a broad range of areas over time, such as climate modeling, polar research, ocean acidification, regional seas and oceans, impacts and adaptation, decarbonization pathways, socioeconomic analyses, sustainability, observations, and climate services. The creation and evolution of the EU’s FPs has played a critical role in establishing Europe’s leading position on climate science by means of promoting excellence, increasing the relevance of climate research for policymaking, and building long-lasting communities and platforms across Europe and beyond as international cooperation has been a key feature of the FPs. No other group of countries collaborates on climate science at such scale. Due to their inherited long-term planning and cross-national nature, the FPs have provided a stable framework for advancing climate science by incentivizing scientists and institutions with diverse expertise to work together, creating the necessary critical mass to tackle the increasing complex and interdisciplinary nature of climate science, rationalizing resource allocation, and setting norms and standards for scientific collaboration. It is hard to imagine in retrospect how a similar level of impact could have been achieved solely at a national level. Looking ahead and capitalizing on the rich experience and lessons learned since the 1980s, important challenges and opportunities need to be addressed. These include critical gaps in knowledge, even higher integration of disciplines, use of new technologies and artificial intelligence for state-of-the-art data analysis and modeling, capturing interlinkages with sustainable development goals, better coordination between national and EU agendas, higher mobility of researchers and ideas from across Europe and beyond, and stronger interactions between scientists and nonscientific entities (public authorities, the private sector, financial institutions, and civil society) in order to better communicate climate science and proactively translate new knowledge into actionable plans.

Article

Impact of Land–Atmosphere Interactions on Sahel Climate  

Yongkang Xue

The Sahel of Africa has been identified as having the strongest land–atmosphere (L/A) interactions on Earth. The Sahelian L/A interaction studies started in the late 1970s. However, due to controversies surrounding the early studies, in which only a single land parameter was considered in L/A interactions, the credibility of land-surface effects on the Sahel’s climate has long been challenged. Using general circulation models and regional climate models coupled with biogeophysical and dynamic vegetation models as well as applying analyses of satellite-derived data, field measurements, and assimilation data, the effects of land-surface processes on West African monsoon variability, which dominates the Sahel climate system at intraseasonal, seasonal, interannual, and decadal scales, as well as mesoscale, have been extensively investigated to realistically explore the Sahel L/A interaction: its effects and the mechanisms involved. The Sahel suffered the longest and most severe drought on the planet in the 20th century. The devastating environmental and socioeconomic consequences resulting from drought-induced famines in the Sahel have provided strong motivation for the scientific community and society to understand the causes of the drought and its impact. It was controversial and under debate whether the drought was a natural process, mainly induced by sea-surface temperature variability, or was affected by anthropogenic activities. Diagnostic and modeling studies of the sea-surface temperature have consistently demonstrated it exerts great influence on the Sahel climate system, but sea-surface temperature is unable to explain the full scope of the Sahel climate variability and the later 20th century’s drought. The effect of land-surface processes, especially land-cover and land-use change, on the drought have also been extensively investigated. The results with more realistic land-surface models suggest land processes are a first-order contributor to the Sahel climate and to its drought during the later 1960s to the 1980s, comparable to sea surface temperature effects. The issues that caused controversies in the early studies have been properly addressed in the studies with state-of-the-art models and available data. The mechanisms through which land processes affect the atmosphere are also elucidated in a number of studies. Land-surface processes not only affect vertical transfer of radiative fluxes and heat fluxes but also affect horizontal advections through their effect on the atmospheric heating rate and moisture flux convergence/divergence as well as horizontal temperature gradients.

Article

Polar Lows  

Annick Terpstra and Shun-ichi Watanabe

Polar lows are intense maritime mesoscale cyclones developing in both hemispheres poleward of the main polar front. These rapidly developing severe storms are accompanied by strong winds, heavy precipitation (hail and snow), and rough sea states. Polar lows can have significant socio-economic impact by disrupting human activities in the maritime polar regions, such as tourism, fisheries, transportation, research activities, and exploration of natural resources. Upon landfall, they quickly decay, but their blustery winds and substantial snowfall affect the local communities in coastal regions, resulting in airport-closure, transportation breakdown and increased avalanche risk. Polar lows are primarily a winter phenomenon and tend to develop during excursions of polar air masses, originating from ice-covered areas, over the adjacent open ocean. These so-called cold-air outbreaks are driven by the synoptic scale atmospheric configuration, and polar lows usually develop along air-mass boundaries associated with these cold-air outbreaks. Local orographic features and the sea-ice configuration also play prominent roles in pre-conditioning the environment for polar low development. Proposed dynamical pathways for polar low development include moist baroclinic instability, symmetric convective instability, and frontal instability, but verification of these mechanisms is limited due to sparse observations and insufficient resolution of reanalysis data. Maritime areas with a frequent polar low presence are climatologically important regions for the global ocean circulation, hence local changes in energy exchange between the atmosphere and ocean in these regions potentially impacts the global climate system. Recent research indicates that the enhanced heat and momentum exchange by mesoscale cyclones likely has a pronounced impact on ocean heat transport by triggering deep water formation in the ocean and by modifying horizontal mixing in the atmosphere. Since the beginning of the satellite-era a steady decline of sea-ice cover in the Northern Hemisphere has expanded the ice-free polar regions, and thus the areas for polar low development, yet the number of polar lows is projected to decline under future climate scenarios.

Article

Predictability of Decadal Atlantic Meridional Overturning Circulation Variations  

Florian Sévellec and Bablu Sinha

The Atlantic meridional overturning circulation (AMOC) is a large, basin-scale circulation located in the Atlantic Ocean that transports climatically important quantities of heat northward. It can be described schematically as a northward flow in the warm upper ocean and a southward return flow at depth in much colder water. The heat capacity of a layer of 2 m of seawater is equivalent to that of the entire atmosphere; therefore, ocean heat content dominates Earth’s energy storage. For this reason and because of the AMOC’s typically slow decadal variations, the AMOC regulates North Atlantic climate and contributes to the relatively mild climate of Europe. Hence, predicting AMOC variations is crucial for predicting climate variations in regions bordering the North Atlantic. Similar to weather predictions, climate predictions are based on numerical simulations of the climate system. However, providing accurate predictions on such long timescales is far from straightforward. Even in a perfect model approach, where biases between numerical models and reality are ignored, the chaotic nature of AMOC variability (i.e., high sensitivity to initial conditions) is a significant source of uncertainty, limiting its accurate prediction. Predictability studies focus on factors determining our ability to predict the AMOC rather than actual predictions. To this end, processes affecting AMOC predictability can be separated into two categories: processes acting as a source of predictability (periodic harmonic oscillations, for instance) and processes acting as a source of uncertainty (small errors that grow and significantly modify the outcome of numerical simulations). To understand the former category, harmonic modes of variability or precursors of AMOC variations are identified. On the other hand, in a perfect model approach, the sources of uncertainty are characterized by the spread of numerical simulations differentiated by the application of small differences to their initial conditions. Two alternative and complementary frameworks have arisen to investigate this spread. The pragmatic framework corresponds to performing an ensemble of simulations, by imposing a randomly chosen small error on the initial conditions of individual simulations. This allows a probabilistic approach and to statistically characterize the importance of the initial condition by evaluating the spread of the ensemble. The theoretical framework uses stability analysis to identify small perturbations to the initial conditions, which are conducive to significant disruption of the AMOC. Beyond these difficulties in assessing the predictability, decadal prediction systems have been developed and tested through a range of hindcasts. The inherent difficulties of operational forecasts span from developing efficient initialization methods to setting accurate radiative forcing to correcting for model drift and bias, all these improvements being estimated and validated through a range of specifically designed skill metrics.

Article

Projected Oceanographical Changes in the Baltic Sea until 2100  

H.E. Markus Meier and Sofia Saraiva

In this article, the concepts and background of regional climate modeling of the future Baltic Sea are summarized and state-of-the-art projections, climate change impact studies, and challenges are discussed. The focus is on projected oceanographic changes in future climate. However, as these changes may have a significant impact on biogeochemical cycling, nutrient load scenario simulations in future climates are briefly discussed as well. The Baltic Sea is special compared to other coastal seas as it is a tideless, semi-enclosed sea with large freshwater and nutrient supply from a partly heavily populated catchment area and a long response time of about 30 years, and as it is, in the early 21st century, warming faster than any other coastal sea in the world. Hence, policymakers request the development of nutrient load abatement strategies in future climate. For this purpose, large ensembles of coupled climate–environmental scenario simulations based upon high-resolution circulation models were developed to estimate changes in water temperature, salinity, sea-ice cover, sea level, oxygen, nutrient, and phytoplankton concentrations, and water transparency, together with uncertainty ranges. Uncertainties in scenario simulations of the Baltic Sea are considerable. Sources of uncertainties are global and regional climate model biases, natural variability, and unknown greenhouse gas emission and nutrient load scenarios. Unknown early 21st-century and future bioavailable nutrient loads from land and atmosphere and the experimental setup of the dynamical downscaling technique are perhaps the largest sources of uncertainties for marine biogeochemistry projections. The high uncertainties might potentially be reducible through investments in new multi-model ensemble simulations that are built on better experimental setups, improved models, and more plausible nutrient loads. The development of community models for the Baltic Sea region with improved performance and common coordinated experiments of scenario simulations is recommended.

Article

The NSF’s Role in Climate Science  

Anjuli S. Bamzai

In the years following the Second World War, the U.S. government played a prominent role in the support of basic scientific research. The National Science Foundation (NSF) was created in 1950 with the primary mission of supporting fundamental science and engineering, excluding medical sciences. Over the years, the NSF has operated from the “bottom up,” keeping close track of research around the United States and the world while maintaining constant contact with the research community to identify ever-moving horizons of inquiry. In the 1950s the field of meteorology was something of a poor cousin to the other branches of science; forecasting was considered more of trade than a discipline founded on sound theoretical foundations. Realizing the importance of the field to both the economy and national security, the NSF leadership made a concerted effort to enhance understanding of the global atmospheric circulation. The National Center for Atmospheric Research (NCAR) was established to complement ongoing research efforts in academic institutions; it has played a pivotal role in providing observational and modeling tools to the emerging cadre of researchers in the disciplines of meteorology and atmospheric sciences. As understanding of the predictability of the coupled atmosphere-ocean system grew, the field of climate science emerged as a natural outgrowth of meteorology, oceanography, and atmospheric sciences. The NSF played a leading role in the implementation of major international programs such as the International Geophysical Year (IGY), the Global Weather Experiment, the World Ocean Circulation Experiment (WOCE) and Tropical Ocean Global Atmosphere (TOGA). Through these programs, understanding of the coupled climate system comprising atmosphere, ocean, land, ice-sheet, and sea ice greatly improved. Consistent with its mission, the NSF supported projects that advanced fundamental knowledge of forcing and feedbacks in the coupled atmosphere-ocean-land system. Research projects have included theoretical, observational, and modeling studies of the following: the general circulation of the stratosphere and troposphere; the processes that govern climate; the causes of climate variability and change; methods of predicting climate variations; climate predictability; development and testing of parameterization of physical processes; numerical methods for use in large-scale climate models; the assembly and analysis of instrumental and/or modeled climate data; data assimilation studies; and the development and use of climate models to diagnose and simulate climate variability and change. Climate scientists work together on an array of topics spanning time scales from the seasonal to the centennial. The NSF also supports research on the natural evolution of the earth’s climate on geological time scales with the goal of providing a baseline for present variability and future trends. The development of paleoclimate data sets has resulted in longer term data for evaluation of model simulations, analogous to the evaluation using instrumental observations. This has enabled scientists to create transformative syntheses of paleoclimate data and modeling outcomes in order to understand the response of the longer-term and higher magnitude variability of the climate system that is observed in the geological records. The NSF will continue to address emerging issues in climate and earth-system science through balanced investments in transformative ideas, enabling infrastructure and major facilities to be developed.