1-3 of 3 Results  for:

  • Future Climate Change Scenarios x
  • Forecasting x
Clear all

Article

Atmospheric Blocking in Observation and Models  

Stefano Tibaldi and Franco Molteni

The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas. Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere. Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics. When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors. Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.

Article

Climate Change Scenarios and African Climate Change  

Kerry H. Cook

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century. The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems. The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening. Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.

Article

Impact of Land–Atmosphere Interactions on Sahel Climate  

Yongkang Xue

The Sahel of Africa has been identified as having the strongest land–atmosphere (L/A) interactions on Earth. The Sahelian L/A interaction studies started in the late 1970s. However, due to controversies surrounding the early studies, in which only a single land parameter was considered in L/A interactions, the credibility of land-surface effects on the Sahel’s climate has long been challenged. Using general circulation models and regional climate models coupled with biogeophysical and dynamic vegetation models as well as applying analyses of satellite-derived data, field measurements, and assimilation data, the effects of land-surface processes on West African monsoon variability, which dominates the Sahel climate system at intraseasonal, seasonal, interannual, and decadal scales, as well as mesoscale, have been extensively investigated to realistically explore the Sahel L/A interaction: its effects and the mechanisms involved. The Sahel suffered the longest and most severe drought on the planet in the 20th century. The devastating environmental and socioeconomic consequences resulting from drought-induced famines in the Sahel have provided strong motivation for the scientific community and society to understand the causes of the drought and its impact. It was controversial and under debate whether the drought was a natural process, mainly induced by sea-surface temperature variability, or was affected by anthropogenic activities. Diagnostic and modeling studies of the sea-surface temperature have consistently demonstrated it exerts great influence on the Sahel climate system, but sea-surface temperature is unable to explain the full scope of the Sahel climate variability and the later 20th century’s drought. The effect of land-surface processes, especially land-cover and land-use change, on the drought have also been extensively investigated. The results with more realistic land-surface models suggest land processes are a first-order contributor to the Sahel climate and to its drought during the later 1960s to the 1980s, comparable to sea surface temperature effects. The issues that caused controversies in the early studies have been properly addressed in the studies with state-of-the-art models and available data. The mechanisms through which land processes affect the atmosphere are also elucidated in a number of studies. Land-surface processes not only affect vertical transfer of radiative fluxes and heat fluxes but also affect horizontal advections through their effect on the atmospheric heating rate and moisture flux convergence/divergence as well as horizontal temperature gradients.