1-7 of 7 Results  for:

  • Forecasting x
Clear all

Article

Atmospheric Blocking in Observation and Models  

Stefano Tibaldi and Franco Molteni

The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas. Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere. Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics. When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors. Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.

Article

Climate Change and Carbon Cycle Feedbacks  

Pierre Friedlingstein

Climate and carbon cycle are tightly coupled on many time scales, from the interannual to the multimillennial. Observation always shows a positive feedback between climate and the carbon cycle: elevated atmospheric CO2 leads to warming, but warming is expected to further release of carbon to the atmosphere, enhancing the atmospheric CO2 increase. Earth system models do represent these climate–carbon cycle feedbacks, always simulating a positive feedback over the 21st century; that is, climate change will lead to loss of carbon from the land and ocean reservoirs. These processes partially offset the increases in land and ocean carbon sinks caused by rising atmospheric CO2. As a result, more of the emitted anthropogenic CO2 will remain in the atmosphere. There is, however, a large uncertainty on the magnitude of this feedback. Recent studies now help to reduce this uncertainty. On short, interannual, time scales, El Niño years record larger-than-average atmospheric CO2 growth rate, with tropical land ecosystems being the main drivers. These climate–carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. On a longer, centennial, time scale, the variability of atmospheric CO2 found in records of the last millennium can be used to constrain the overall global carbon cycle response to climate. These independent methods confirm that the climate–carbon cycle feedback is positive, but probably more consistent with the lower end of the comprehensive models range, excluding very large climate–carbon cycle feedbacks.

Article

Climate Change Scenarios and African Climate Change  

Kerry H. Cook

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century. The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems. The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening. Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.

Article

Forecasting Severe Convective Storms  

Stephen Corfidi

Forecasting severe convective weather remains one of the most challenging tasks facing operational meteorology today, especially in the mid-latitudes, where severe convective storms occur most frequently and with the greatest impact. The forecast difficulties reflect, in part, the many different atmospheric processes of which severe thunderstorms are a by-product. These processes occur over a wide range of spatial and temporal scales, some of which are poorly understood and/or are inadequately sampled by observational networks. Therefore, anticipating the development and evolution of severe thunderstorms will likely remain an integral part of national and local forecasting efforts well into the future. Modern severe weather forecasting began in the 1940s, primarily employing the pattern recognition approach throughout the 1950s and 1960s. Substantial changes in forecast approaches did not come until much later, however, beginning in the 1980s. By the start of the new millennium, significant advances in the understanding of the physical mechanisms responsible for severe weather enabled forecasts of greater spatial and temporal detail. At the same time, technological advances made available model thermodynamic and wind profiles that supported probabilistic forecasts of severe weather threats. This article provides an updated overview of operational severe local storm forecasting, with emphasis on present-day understanding of the mesoscale processes responsible for severe convective storms, and the application of recent technological developments that have revolutionized some aspects of severe weather forecasting. The presentation, nevertheless, notes that increased understanding and enhanced computer sophistication are not a substitute for careful diagnosis of the current meteorological environment and an ingredients-based approach to anticipating changes in that environment; these techniques remain foundational to successful forecasts of tornadoes, large hail, damaging wind, and flash flooding.

Article

High-Resolution Thunderstorm Modeling  

Leigh Orf

Since the dawn of the digital computing age in the mid-20th century, computers have been used as virtual laboratories for the study of atmospheric phenomena. The first simulations of thunderstorms captured only their gross features, yet required the most advanced computing hardware of the time. The following decades saw exponential growth in computational power that was, and continues to be, exploited by scientists seeking to answer fundamental questions about the internal workings of thunderstorms, the most devastating of which cause substantial loss of life and property throughout the world every year. By the mid-1970s, the most powerful computers available to scientists contained, for the first time, enough memory and computing power to represent the atmosphere containing a thunderstorm in three dimensions. Prior to this time, thunderstorms were represented primarily in two dimensions, which implicitly assumed an infinitely long cloud in the missing dimension. These earliest state-of-the-art, fully three-dimensional simulations revealed fundamental properties of thunderstorms, such as the structure of updrafts and downdrafts and the evolution of precipitation, while still only roughly approximating the flow of an actual storm due computing limitations. In the decades that followed these pioneering three-dimensional thunderstorm simulations, new modeling approaches were developed that included more accurate ways of representing winds, temperature, pressure, friction, and the complex microphysical processes involving solid, liquid, and gaseous forms of water within the storm. Further, these models also were able to be run at a resolution higher than that of previous studies due to the steady growth of available computational resources described by Moore’s law, which observed that computing power doubled roughly every two years. The resolution of thunderstorm models was able to be increased to the point where features on the order of a couple hundred meters could be resolved, allowing small but intense features such as downbursts and tornadoes to be simulated within the parent thunderstorm. As model resolution increased further, so did the amount of data produced by the models, which presented a significant challenge to scientists trying to compare their simulated thunderstorms to observed thunderstorms. Visualization and analysis software was developed and refined in tandem with improved modeling and computing hardware, allowing the simulated data to be brought to life and allowing direct comparison to observed storms. In 2019, the highest resolution simulations of violent thunderstorms are able to capture processes such as tornado formation and evolution which are found to include the aggregation of many small, weak vortices with diameters of dozens of meters, features which simply cannot not be simulated at lower resolution.

Article

Impact of Land–Atmosphere Interactions on Sahel Climate  

Yongkang Xue

The Sahel of Africa has been identified as having the strongest land–atmosphere (L/A) interactions on Earth. The Sahelian L/A interaction studies started in the late 1970s. However, due to controversies surrounding the early studies, in which only a single land parameter was considered in L/A interactions, the credibility of land-surface effects on the Sahel’s climate has long been challenged. Using general circulation models and regional climate models coupled with biogeophysical and dynamic vegetation models as well as applying analyses of satellite-derived data, field measurements, and assimilation data, the effects of land-surface processes on West African monsoon variability, which dominates the Sahel climate system at intraseasonal, seasonal, interannual, and decadal scales, as well as mesoscale, have been extensively investigated to realistically explore the Sahel L/A interaction: its effects and the mechanisms involved. The Sahel suffered the longest and most severe drought on the planet in the 20th century. The devastating environmental and socioeconomic consequences resulting from drought-induced famines in the Sahel have provided strong motivation for the scientific community and society to understand the causes of the drought and its impact. It was controversial and under debate whether the drought was a natural process, mainly induced by sea-surface temperature variability, or was affected by anthropogenic activities. Diagnostic and modeling studies of the sea-surface temperature have consistently demonstrated it exerts great influence on the Sahel climate system, but sea-surface temperature is unable to explain the full scope of the Sahel climate variability and the later 20th century’s drought. The effect of land-surface processes, especially land-cover and land-use change, on the drought have also been extensively investigated. The results with more realistic land-surface models suggest land processes are a first-order contributor to the Sahel climate and to its drought during the later 1960s to the 1980s, comparable to sea surface temperature effects. The issues that caused controversies in the early studies have been properly addressed in the studies with state-of-the-art models and available data. The mechanisms through which land processes affect the atmosphere are also elucidated in a number of studies. Land-surface processes not only affect vertical transfer of radiative fluxes and heat fluxes but also affect horizontal advections through their effect on the atmospheric heating rate and moisture flux convergence/divergence as well as horizontal temperature gradients.

Article

Polar Lows  

Annick Terpstra and Shun-ichi Watanabe

Polar lows are intense maritime mesoscale cyclones developing in both hemispheres poleward of the main polar front. These rapidly developing severe storms are accompanied by strong winds, heavy precipitation (hail and snow), and rough sea states. Polar lows can have significant socio-economic impact by disrupting human activities in the maritime polar regions, such as tourism, fisheries, transportation, research activities, and exploration of natural resources. Upon landfall, they quickly decay, but their blustery winds and substantial snowfall affect the local communities in coastal regions, resulting in airport-closure, transportation breakdown and increased avalanche risk. Polar lows are primarily a winter phenomenon and tend to develop during excursions of polar air masses, originating from ice-covered areas, over the adjacent open ocean. These so-called cold-air outbreaks are driven by the synoptic scale atmospheric configuration, and polar lows usually develop along air-mass boundaries associated with these cold-air outbreaks. Local orographic features and the sea-ice configuration also play prominent roles in pre-conditioning the environment for polar low development. Proposed dynamical pathways for polar low development include moist baroclinic instability, symmetric convective instability, and frontal instability, but verification of these mechanisms is limited due to sparse observations and insufficient resolution of reanalysis data. Maritime areas with a frequent polar low presence are climatologically important regions for the global ocean circulation, hence local changes in energy exchange between the atmosphere and ocean in these regions potentially impacts the global climate system. Recent research indicates that the enhanced heat and momentum exchange by mesoscale cyclones likely has a pronounced impact on ocean heat transport by triggering deep water formation in the ocean and by modifying horizontal mixing in the atmosphere. Since the beginning of the satellite-era a steady decline of sea-ice cover in the Northern Hemisphere has expanded the ice-free polar regions, and thus the areas for polar low development, yet the number of polar lows is projected to decline under future climate scenarios.