1-18 of 18 Results  for:

  • Climate Impact: Extreme Events x
Clear all

Article

Climate Change and Severe Thunderstorms  

John T. Allen

The response of severe thunderstorms to a changing climate is a rapidly growing area of research. Severe thunderstorms are one of the largest contributors to global losses in excess of USD $10 billion per year in terms of property and agriculture, as well as dozens of fatalities. Phenomena associated with severe thunderstorms such as large hail (greater than 2 cm), damaging winds (greater than 90 kmh−1), and tornadoes pose a global threat, and have been documented on every continent except Antarctica. Limitations of observational records for assessing past trends have driven a variety of approaches to not only characterize the past occurrence but provide a baseline against which future projections can be interpreted. These proxy methods have included using environments or conditions favorable to the development of thunderstorms and directly simulating storm updrafts using dynamic downscaling. Both methodologies have demonstrated pronounced changes to the frequency of days producing severe thunderstorms. Major impacts of a strongly warmed climate include a general increase in the length of the season in both the fall and spring associated with increased thermal instability and increased frequency of severe days by the late 21st century. While earlier studies noted changes to vertical wind shear decreasing frequency, recent studies have illustrated that this change appears not to coincide with days which are unstable. Questions remain as to whether the likelihood of storm initiation decreases, whether all storms which now produce severe weather will maintain their physical structure in a warmer world, and how these changes to storm frequency and or intensity may manifest for each of the threats posed by tornadoes, hail, and damaging winds. Expansion of the existing understanding globally is identified as an area of needed future research, together with meaningful consideration of both the influence of climate variability and indirect implications of anthropogenic modification of the physical environment.

Article

Climate Change Impacts on Cities in the Baltic Sea Region  

Sonja Deppisch

While not all projected climate change impacts are affecting especially and directly at all the cities of the Baltic Sea region (bsr), including its basin, those cities expect very different direct as well as indirect impacts of climate change. The impacts are also a matter of location, if the city with its built structures and concentration of population is located in the northern or southern part of this basin, or more inland or directly at the coast. As there are many different definitions in use trying to determine what a city is, also in the different national contexts of the bsr, here it is cities in the sense of being human-dominated densely populated areas, which are also characterized by higher concentrations of built-up areas, infrastructure, and soil-sealing as well as socioeconomic roles than rural settlements are. Those characteristics render cities also especially vulnerable to climate change impacts while there are some opportunities arising too. There are many studies on climate change impacts on the Baltic Sea itself as well as on the various ecosystems, but the studies on the observed as well as potential future impacts of climate change on cities are disperse, many are also of a national character or concentrating on a small number of cases, leaving some cities not well studied at all. This renders an all-encompassing picture on the cities within the bsr difficult and even more complicated as every city provides a mix of built-up and open structures, of socioeconomic structure and role in a region, nation-state, or even on an international level, and further characteristics. Their urban development is dependent on manifold various interdependencies as well as climatic and nonclimatic drivers, such as, to name just a few diverse examples, urban to international governance processes, or topography and location, or also different socioeconomic vulnerabilities within the Baltic Sea basin. Accordingly every urban society and structure provides specific exposure, vulnerabilities, and adaptive capacity. Generally, the cities of the bsr have to deal with the impacts of temperature rise, natural hazards, and extreme events, and, depending on location and topography, with sea-level rise. With reference to temperature rise and the increase of heat waves, it is important to consider that cities of a certain size within the Baltic Sea basin contribute to their own urban climatic conditions and provide already urban heat islands. Also, urban planning and building facilitated by local political decisions contribute to the extent of urban floods as well as their damage, as these are regulating, for example, the sealing of soils or new built-up areas in flood-prone zones.

Article

Climate Services in South America  

Carolina Vera

Significant advances in the implementation of climate services in South America have occurred in response to the challenge proposed by World Meteorological Organization (WMO) in 2009 to expand and strengthen such climate services aimed at the public in general and key socioeconomic sectors, in particular. An evaluation of these advances, as well as their achievements, limitations, and own challenges is presented. The approach of this evaluation is based on the analysis of a representative set of climate services experiences in the region. In general, South America has made considerable progress in conducting initiatives that operationally provide climate monitoring and prediction information, such as the WMO regional climate centers. There are also promising experiences of climate services in some regions and countries, aimed at sectors such as agriculture, water, and disaster risk management, among others. Likewise, the levels of climate predictability existing in various regions of the continent have allowed the development of regional seasonal prediction tools, which, in some cases, have been integrated with information on non-climatic factors to provide guidance oriented to specific sectors. Also, participatory frameworks engaging the different actors involved, including frameworks based on co-production strategies, ensure stronger appropriation of climate services by decision makers. Successful examples include the development of agro-climatic predictions to support decision-making and agricultural practices, hydroclimatic predictions to make decisions related to the generation and provision of electrical energy, and monitoring and prediction tools to prevent the vector-borne diseases. However, a good portion of these efforts focuses mainly on the provision of climate services and not enough on their actual use. On the other hand, most efforts are under development and implementation through short- or medium-term projects. Therefore, the strengthening and growth of climate services in South America require the consolidation and expansion of not only the regional monitoring and prediction capacities, but also of the personnel and resources of the participating institutions in continuous linkage with the users.

Article

Communicating Climate Change Adaptation and Resilience  

Susanne C. Moser

Communicating the impacts of climate change and possible adaptive responses is a relatively recent branch of the larger endeavor of climate change communication. This recent emergence, in large part, is driven by the fact that the impacts and policy/planning/practice responses have only recently emerged in more widespread public consciousness and discourse, and thus in scholarly treatment. This article will first describe the critical and precarious moment of when impacts and adaptation communication becomes important; it will then summarize proposed approaches to do so effectively; and discuss key challenges confronting climate change communication going forward. These challenges may well be unique in the field of communication, in that they either uniquely combine previously encountered difficulties into novel complexities or are truly unprecedented. To date, scholarship and experience in climate, environmental, or risk communication provide little guidance on how to meet these challenges of communicating effectively with diverse publics and decision makers in the face of long-term degradation of the life support system of humanity. The article will conclude with an attempt to offer research and practice directions, fit at least to serve as appropriately humble attitudes toward understanding and engaging fellow humans around the profound risks of an utterly uncertain and far-from-assured future.

Article

Downscaling Climate Information  

Rasmus Benestad

What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate. It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects. It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary. Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities. It is simply not adequate to interpolate from model results. However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature. The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate). This, of course, also applies to other weather elements. Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate. The application of downscaling can involve several different approaches. This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses. One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change. These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic. We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon. It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes. When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions. Another important point is to apply proper validation to make sure the models give skillful predictions. For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections. This means the downscaling doesn’t get the right answer for the right reason. Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models. A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate. It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.

Article

Forecasting Severe Convective Storms  

Stephen Corfidi

Forecasting severe convective weather remains one of the most challenging tasks facing operational meteorology today, especially in the mid-latitudes, where severe convective storms occur most frequently and with the greatest impact. The forecast difficulties reflect, in part, the many different atmospheric processes of which severe thunderstorms are a by-product. These processes occur over a wide range of spatial and temporal scales, some of which are poorly understood and/or are inadequately sampled by observational networks. Therefore, anticipating the development and evolution of severe thunderstorms will likely remain an integral part of national and local forecasting efforts well into the future. Modern severe weather forecasting began in the 1940s, primarily employing the pattern recognition approach throughout the 1950s and 1960s. Substantial changes in forecast approaches did not come until much later, however, beginning in the 1980s. By the start of the new millennium, significant advances in the understanding of the physical mechanisms responsible for severe weather enabled forecasts of greater spatial and temporal detail. At the same time, technological advances made available model thermodynamic and wind profiles that supported probabilistic forecasts of severe weather threats. This article provides an updated overview of operational severe local storm forecasting, with emphasis on present-day understanding of the mesoscale processes responsible for severe convective storms, and the application of recent technological developments that have revolutionized some aspects of severe weather forecasting. The presentation, nevertheless, notes that increased understanding and enhanced computer sophistication are not a substitute for careful diagnosis of the current meteorological environment and an ingredients-based approach to anticipating changes in that environment; these techniques remain foundational to successful forecasts of tornadoes, large hail, damaging wind, and flash flooding.

Article

Formation and Development of Convective Storms  

R. J. Trapp

Cumulus clouds are pervasive on earth, and play important roles in the transfer of energy through the atmosphere. Under certain conditions, shallow, nonprecipitating cumuli may grow vertically to occupy a significant depth of the troposphere, and subsequently may evolve into convective storms. The qualifier “convective” implies that the storms have vertical accelerations that are driven primarily, though not exclusively, by buoyancy over a deep layer. Such buoyancy in the atmosphere arises from local density variations relative to some base state density; the base state is typically idealized as a horizontal average over a large area, which is also considered the environment. Quantifications of atmospheric buoyancy are typically expressed in terms of temperature and humidity, and allow for an assessment of the likelihood that convective clouds will form or initiate. Convection initiation is intimately linked to existence of a mechanism by which air is vertically lifted to realize this buoyancy and thus accelerations. Weather fronts and orography are the canonical lifting mechanisms. As modulated by an ambient or environmental distribution of temperature, humidity, and wind, weather fronts also facilitate the transition of convective clouds into storms with locally heavy rain, lightning, and other possible hazards. For example, in an environment characterized by winds that are weak and change little with distance above the ground, the storms tend to be short lived and benign. The structure of the vertical drafts and other internal storm processes under weak wind shear—i.e., a small change in the horizontal wind over some vertical distance—are distinct relative to those when the environmental wind shear is strong. In particular, strong wind shear in combination with large buoyancy favors the development of squall lines and supercells, both of which are highly coherent storm types. Besides having durations that may exceed a few hours, both of these storm types tend to be particularly hazardous: squall lines are most apt to generate swaths of damaging “straight-line” winds, and supercells spawn the most intense tornadoes and are responsible for the largest hail. Methods used to predict convective-storm hazards capitalize on this knowledge of storm formation and development.

Article

Future Climate Change in the European Alps  

Andreas Gobiet and Sven Kotlarski

The analysis of state-of-the-art regional climate projections indicates a number of robust changes of the climate of the European Alps by the end of this century. Among these are a temperature increase in all seasons and at all elevations and a significant decrease in natural snow cover. Precipitation changes, however, are more subtle and subject to larger uncertainties. While annual precipitation sums are projected to remain rather constant until the end of the century, winter precipitation is projected to increase. Summer precipitation changes will most likely be negative, but increases are possible as well and are covered by the model uncertainty range. Precipitation extremes are expected to intensify in all seasons. The projected changes by the end of the century considerably depend on the greenhouse-gas scenario assumed, with the high-end RCP8.5 scenario being associated with the most prominent changes. Until the middle of the 21st century, however, it is projected that climate change in the Alpine area will only slightly depend on the specific emission scenario. These results indicate that harmful weather events in the Alpine area are likely to intensify in future. This particularly refers to extreme precipitation events, which can trigger flash floods and gravitational mass movements (debris flows, landslides) and lead to substantial damage. Convective precipitation extremes (thunderstorms) are additionally a threat to agriculture, forestry, and infrastructure, since they are often associated with strong wind gusts that cause windbreak in forests and with hail that causes damage in agriculture and infrastructure. Less spectacular but still very relevant is the effect of soil erosion on inclined arable land, caused by heavy precipitation. At the same time rising temperatures lead to longer vegetation periods, increased evapotranspiration, and subsequently to higher risk of droughts in the drier valleys of the Alps. Earlier snowmelt is expected to lead to a seasonal runoff shift in many catchments and the projected strong decrease of the natural snow cover will have an impact on tourism and, last but not least, on the cultural identity of many inhabitants of the Alpine area.

Article

The Great Green Wall in the Sahel  

Cheikh Mbow

For several decades, the Sahelian countries have been facing continuing rainfall shortages, which, coupled with anthropogenic factors, have severely disrupted the great ecological balance, leading the area in an inexorable process of desertification and land degradation. The Sahel faces a persistent problem of climate change with high rainfall variability and frequent droughts, and this is one of the major drivers of population’s vulnerability in the region. Communities struggle against severe land degradation processes and live in an unprecedented loss of productivity that hampers their livelihoods and puts them among the populations in the world that are the most vulnerable to climatic change. In response to severe land degradation, 11 countries of the Sahel agreed to work together to address the policy, investment, and institutional barriers to establishing a land-restoration program that addresses climate change and land degradation. The program is called the Pan-Africa Initiative for the Great Green Wall (GGW). The initiative aims at helping to halt desertification and land degradation in the Sahelian zone, improving the lives and livelihoods of smallholder farmers and pastoralists in the area and helping its populations to develop effective adaptation strategies and responses through the use of tree-based development programs. To make the GGW initiative successful, member countries have established a coordinated and integrated effort from the government level to local scales and engaged with many stakeholders. Planning, decision-making, and actions on the ground is guided by participation and engagement, informed by policy-relevant knowledge to address the set of scalable land-restoration practices, and address drivers of land use change in various human-environmental contexts. In many countries, activities specific to achieving the GGW objectives have been initiated in the last five years.

Article

Hail and Hailstorms  

Julian Brimelow

Hail has been identified as the largest contributor to insured losses from thunderstorms globally, with losses costing the insurance industry billions of dollars each year. Yet, of all precipitation types, hail is probably subject to the largest uncertainties. Some might go so far as to argue that observing and forecasting hail is as difficult, if not more difficult, than is forecasting tornadoes. The reasons why hail is challenging are many and varied and reflected by the fact that hailstones display a wide variety of shapes, sizes and internal structures. There is also an important clue in this diversity—nature is telling us that hail can grow by following a wide variety of trajectories within thunderstorms, each having a unique set of conditions. It is because of this complexity that modeling hail growth and forecasting size is so challenging. Consequently, it is understandable that predicting the occurrence and size of hail seems an impossible task. Through persistence, ingenuity and technology, scientists have made progress in understanding the key ingredients and processes at play. Technological advances mean that we can now, with some confidence, identify those storms that very likely contain hail and even estimate the maximum expected hail size on the ground hours in advance. Even so, there is still much we need to learn about the many intriguing aspects of hail growth.

Article

High-Resolution Thunderstorm Modeling  

Leigh Orf

Since the dawn of the digital computing age in the mid-20th century, computers have been used as virtual laboratories for the study of atmospheric phenomena. The first simulations of thunderstorms captured only their gross features, yet required the most advanced computing hardware of the time. The following decades saw exponential growth in computational power that was, and continues to be, exploited by scientists seeking to answer fundamental questions about the internal workings of thunderstorms, the most devastating of which cause substantial loss of life and property throughout the world every year. By the mid-1970s, the most powerful computers available to scientists contained, for the first time, enough memory and computing power to represent the atmosphere containing a thunderstorm in three dimensions. Prior to this time, thunderstorms were represented primarily in two dimensions, which implicitly assumed an infinitely long cloud in the missing dimension. These earliest state-of-the-art, fully three-dimensional simulations revealed fundamental properties of thunderstorms, such as the structure of updrafts and downdrafts and the evolution of precipitation, while still only roughly approximating the flow of an actual storm due computing limitations. In the decades that followed these pioneering three-dimensional thunderstorm simulations, new modeling approaches were developed that included more accurate ways of representing winds, temperature, pressure, friction, and the complex microphysical processes involving solid, liquid, and gaseous forms of water within the storm. Further, these models also were able to be run at a resolution higher than that of previous studies due to the steady growth of available computational resources described by Moore’s law, which observed that computing power doubled roughly every two years. The resolution of thunderstorm models was able to be increased to the point where features on the order of a couple hundred meters could be resolved, allowing small but intense features such as downbursts and tornadoes to be simulated within the parent thunderstorm. As model resolution increased further, so did the amount of data produced by the models, which presented a significant challenge to scientists trying to compare their simulated thunderstorms to observed thunderstorms. Visualization and analysis software was developed and refined in tandem with improved modeling and computing hardware, allowing the simulated data to be brought to life and allowing direct comparison to observed storms. In 2019, the highest resolution simulations of violent thunderstorms are able to capture processes such as tornado formation and evolution which are found to include the aggregation of many small, weak vortices with diameters of dozens of meters, features which simply cannot not be simulated at lower resolution.

Article

Historical Documents as Proxy Data in Venice and Its Marine Environment  

Dario Camuffo

The environmental history of Venice over the last millennium has been reconstructed from written, pictorial, and architectural documentary sources, used in a synergistic way. The method of transforming a document into an index and then into calibrated numerical values according to an international system of units has been applied in the case of Venice and its geographical and climate peculiarities. Because frost constituted a dramatic challenge for the city, a series of severe winters is well documented: The city was sieged by ice, meaning Venetians had to cross the ice transporting food, beverages, and wood for burning in carts, as recorded in written reports and visual representations. The sea level in the 18th century has been reconstructed based on paintings by Canaletto and Bellotto, who took advantage of a camera obscura to precisely draw the views of the city and its canals.. These paintings accurately represent the green algae belt that corresponds to the level of soaking created by marine waters at high tide. This has made it possible to measure how much the green algae (and therefore the seawater) has risen since the 18th century. Similarly, a painting by Veronese has enabled the reconstruction of sea level rise (SLR) since 1571. Another useful proxy is the water stairs of the Venetian palaces. These were originally built to access boats and are now (almost) totally submerged and covered with algae. As the sea level rose, these steps became submerged underwater. The depth of the lowest step is therefore representative of how much the sea level rose after the stair was built. This proxy has allowed the relative sea level since 1350 to be reconstructed, and an exponential trend in the rising of the sea level has been identified. Venice has at times been flooded by seawater, including tsunamis at the beginning of the second millennium. A long series of sea floods due to storm surges triggered by particular meteorological situations shows that the flooding frequency is related to the exponential SLR. In the 1960s, there was a sharp increase in frequency of flooding, which coincided with the digging of deep and wide canals, excavated to allow the passage of tankers. This increased the exchange of water between the sea and the lagoon. Proxies based on archaeological remains, as well as geological-biological cores extracted from the coastal area and dated with isotopic methods, cover long time periods; the longest record reaching 13 ka BP. However, the time resolution is reduced, thus providing good data for physical geography purposes.

Article

Impacts of Climate Warming on Alpine Lakes  

Martin T. Dokulil

Climate warming has impacted Alpine lakes at all altitudes. The European Alps are particularly affected because the mean temperature increment is twice as high as the global average. Depending on the reduction of greenhouse gases realized in the near future, by the end of the 21st century, Alpine lakes will have warmed above the current temperature by 2–6°C. Extreme weather situations such as heatwaves, droughts, heavy precipitation, and storms are expected to further increase, impacting Alpine regions and lakes worldwide. The expected increase in temperature and the associated impacts on almost all aspects of the ecosystem, together with increasing greenhouse gases and extreme climatic events, will negatively affect Alpine lakes throughout the world.

Article

The Indian Ocean Dipole  

Saji N. Hameed

Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.

Article

Polar Lows  

Annick Terpstra and Shun-ichi Watanabe

Polar lows are intense maritime mesoscale cyclones developing in both hemispheres poleward of the main polar front. These rapidly developing severe storms are accompanied by strong winds, heavy precipitation (hail and snow), and rough sea states. Polar lows can have significant socio-economic impact by disrupting human activities in the maritime polar regions, such as tourism, fisheries, transportation, research activities, and exploration of natural resources. Upon landfall, they quickly decay, but their blustery winds and substantial snowfall affect the local communities in coastal regions, resulting in airport-closure, transportation breakdown and increased avalanche risk. Polar lows are primarily a winter phenomenon and tend to develop during excursions of polar air masses, originating from ice-covered areas, over the adjacent open ocean. These so-called cold-air outbreaks are driven by the synoptic scale atmospheric configuration, and polar lows usually develop along air-mass boundaries associated with these cold-air outbreaks. Local orographic features and the sea-ice configuration also play prominent roles in pre-conditioning the environment for polar low development. Proposed dynamical pathways for polar low development include moist baroclinic instability, symmetric convective instability, and frontal instability, but verification of these mechanisms is limited due to sparse observations and insufficient resolution of reanalysis data. Maritime areas with a frequent polar low presence are climatologically important regions for the global ocean circulation, hence local changes in energy exchange between the atmosphere and ocean in these regions potentially impacts the global climate system. Recent research indicates that the enhanced heat and momentum exchange by mesoscale cyclones likely has a pronounced impact on ocean heat transport by triggering deep water formation in the ocean and by modifying horizontal mixing in the atmosphere. Since the beginning of the satellite-era a steady decline of sea-ice cover in the Northern Hemisphere has expanded the ice-free polar regions, and thus the areas for polar low development, yet the number of polar lows is projected to decline under future climate scenarios.

Article

Regional Sea Level  

Thomas Wahl and Sönke Dangendorf

Sea level rise leads to an increase in coastal flooding risk for coastal communities throughout the world. Changes in mean sea level are caused by a combination of human-induced global warming and natural variability and are not uniform throughout the world. The key processes leading to mean sea level rise and its variability in space and time are the melting of land-based ice and changes in the hydrological cycle; thermal expansion due to warming oceans; changes in winds, ocean currents, and atmospheric pressure; and, when focusing on the relative changes between the land and the ocean, any vertical motion of the land itself (subsidence or uplift). In addition to the change in mean sea level, which is the main climatic driver for changes in coastal flooding risk in most regions, additional changes in tides, storm surges, or waves can further exacerbate, or offset, the negative effects of mean sea level rise. Hence, it is important to analyze, understand, and ultimately project the changes in all of these sea level components individually and combined, including the complex interactions between them. Advances in sea level science in the 21st century along with new and extended observational records including in situ and remote sensing measurements have paved the path to being able to provide better and more localized information to stakeholders, particularly in the context of making decisions about coastal adaptation to protect the prosperity of coastal communities and ecosystems.

Article

Regional Technological Adaptation of Coast and Climate With a Focus on the North Sea  

Jürgen Jensen, Felix Soltau, and Ivan D. Haigh

Coastal zones are the most densely populated areas in the world and are vulnerable to extreme meteorological events like hurricanes, storm surges, tsunamis and climate change–induced sea level rise. Coasts are subject to constant change because of anthropogenic and natural variations in sea level, currents and wind waves, sediment supply, and so forth. The building of coastal defense and protection measures has also resulted in significant anthropogenic changes to the coast. Coasts are also affected by economic uses, including tourism, industrial activities (e.g., offshore wind farms), shipping, and fishing in coastal waters. This article discusses the regional technological adaptation of the coast, with a focus on the North Sea. The coastlines around the North Sea are, in many places, low lying, densely populated, and vulnerable to variations in sea level and coastal change. Worldwide, developments of coasts have been closely linked to climatic changes as mean sea level has increased and decreased over thousands of years. Around 2,000 years ago, people started to build the first coastal protection measures around the North Sea. A lot of different protection measures were developed, including dwelling mounds, groynes, dikes, polders, beach nourishment, and storm surge barriers. Land reclamation and storm surges shaped the Wadden Sea coast dramatically in the past. Globally, coasts and corresponding technological coastal adaptation measures are very diverse. Contrasting the previous technological “hard” coastal protection measures, in the 21st century nature-based solutions have become more attractive and are starting to be implemented more widely. Their natural contribution to coastal protection also provides an ecosystem service.

Article

Two Millennia of Natural and Anthropogenic Changes of the Polish Baltic Coast  

Andrzej Osadczuk, Ryszard Krzysztof Borówka, and Joanna Dudzińska-Nowak

Changes of the coast are a net result of morphodynamic processes driven by changes in external conditions. Morphodynamics can be understood as feedback between shore topography and hydrodynamics, the latter including bedload transport, which alters the morphology of the coast. The evolution of a marine coast can take various pathways depending on the time scale, shoreline length, geological setting, tectonic underpinnings, type and availability of sediments in the nearshore zone, sea level changes, intensity of waves and currents, and the influence of the adjacent land masses. A spatio-temporal approach (processes of millennial, decadal, annual, and seasonal change) is particularly important for coastal areas built of erosion-prone, poorly consolidated glacial and postglacial deposits. This is the case of the southern Baltic Sea coast where the shore has been and continues to be impacted by geological processes, climatic factors, and anthropogenic activities. The processes involved are shaped primarily by external factors such as wind–wave action, currents, storm surges, precipitation, winter ice cover, and gravitational mass movements. The shoreline response to climate change depends on both the nature of the change and the coastal zone characteristics. Long-term climate changes result in sea level changes. The sea level rise resulting from global warming enhances coastal erosion, particularly where the shore is built by poorly consolidated rocks and deposits. Coastal zones are usually very sensitive to all the external forces, therefore climate change will most likely be the strongest driver and will be the first to impinge on the coast, whereas the most distant changes in the oceans may produce effects delayed by decades or even centuries.