1-2 of 2 Results  for:

  • Keywords: snow x
  • Climate of the European Alps x
Clear all


The European Alps have experienced remarkable climate changes since the beginning of the Industrial Age. In particular, mean air temperature in the region increased at a greater rate than global temperature, leading to the loss of nearly half of the glaciated area and to important changes in the ecosystems. Spanning 1,200 km in length, with peaks reaching over 4,000 meters above sea level (m asl), the Alps have a critical influence over the weather in most of Europe and separate the colder oceanic/continental climate in the north from the milder Mediterranean climate in the south. The climatic differences between the main slopes are reflected into different climate changes—whereas the northern slope got wetter, the southern slope got drier. The consequences of these climate changes are not confined to the Alpine region. Being located in the center of Europe, the Alps provide water and electricity for over 100 million people. Alpine run-off is a major contributor to the total discharge of several major European rivers such as the Rhine, the Rhône, the Po, and the Danube. Therefore, climate change in the Alps can have significant economic impacts on a continental scale. Their convenient geographical position allowed scientists to study the Alpine climate since the very beginning of the instrumental era. The first instrumental meteorological observations in an Alpine valley were taken as early as the mid-17th century, soon followed by measurements at higher elevations. Continuous records are available since the late 18th century, providing invaluable information on climate variability to modern-day researchers. Although there is overwhelming evidence of a dominant anthropogenic influence on the observed temperature increase, the causes of the changes that affected other variables have, in many cases, not been sufficiently investigated by the scientific community.


Andreas Gobiet and Sven Kotlarski

The analysis of state-of-the-art regional climate projections indicates a number of robust changes of the climate of the European Alps by the end of this century. Among these are a temperature increase in all seasons and at all elevations and a significant decrease in natural snow cover. Precipitation changes, however, are more subtle and subject to larger uncertainties. While annual precipitation sums are projected to remain rather constant until the end of the century, winter precipitation is projected to increase. Summer precipitation changes will most likely be negative, but increases are possible as well and are covered by the model uncertainty range. Precipitation extremes are expected to intensify in all seasons. The projected changes by the end of the century considerably depend on the greenhouse-gas scenario assumed, with the high-end RCP8.5 scenario being associated with the most prominent changes. Until the middle of the 21st century, however, it is projected that climate change in the Alpine area will only slightly depend on the specific emission scenario. These results indicate that harmful weather events in the Alpine area are likely to intensify in future. This particularly refers to extreme precipitation events, which can trigger flash floods and gravitational mass movements (debris flows, landslides) and lead to substantial damage. Convective precipitation extremes (thunderstorms) are additionally a threat to agriculture, forestry, and infrastructure, since they are often associated with strong wind gusts that cause windbreak in forests and with hail that causes damage in agriculture and infrastructure. Less spectacular but still very relevant is the effect of soil erosion on inclined arable land, caused by heavy precipitation. At the same time rising temperatures lead to longer vegetation periods, increased evapotranspiration, and subsequently to higher risk of droughts in the drier valleys of the Alps. Earlier snowmelt is expected to lead to a seasonal runoff shift in many catchments and the projected strong decrease of the natural snow cover will have an impact on tourism and, last but not least, on the cultural identity of many inhabitants of the Alpine area.