1-4 of 4 Results

  • Keywords: European Alps x
Clear all

Article

The European Alps feature a unique situation with the densest network of long-term instrumental climate observations and anthropogenic emission sources located in the immediate vicinity of glaciers suitable for ice core studies. To archive atmospheric changes in an undisturbed sequence of firn and ice layers, ice core drilling sites require temperatures low enough to minimize meltwater percolation. In the Alps, this implies a restriction to the highest summit glaciers of comparatively small horizontal and vertical extension (i.e., with typical ice thickness not much exceeding 100 m). As a result, Alpine ice cores offer either high-resolution or long-term records, depending on the net snow accumulation regime of the drilling site. High-accumulation Alpine ice cores have been used with great success to study the anthropogenic influence on aerosol-related atmospheric impurities over the last 100 years or so. However, respective long-term reconstructions (i.e., substantially exceeding the instrumental era) from low-accumulation sites remain comparatively sparse. Accordingly, deciphering Alpine ice cores as long-term climate records deserves special emphasis. Certain conditions must exist for Alpine ice cores to serve as climate archives, and this is important in particular regarding the challenges and achievements that have significance for ice cores from other mountain areas: (a) a reliable chronology is the fundamental prerequisite for interpreting any ice core proxy time series. Advances in radiometric ice dating and annual layer counting offer the tools to crucially increase dating precision in the preinstrumental era. (b) Glacier flow effects and spatio-seasonal snow deposition variability challenge linking the ice core proxy signals to the respective atmospheric variability (e.g., of temperature, mineral dust, and impurity concentrations). Here, assistance comes from combining multiple ice cores from one site and from complementary meteorological, glaciological, and geophysical surveys. (c) As Alpine ice cores continue to advance their contribution to Holocene climate science, exploring the link to instrumental, historical, and other natural climate archives gains increasing importance.

Article

Andreas Gobiet and Sven Kotlarski

The analysis of state-of-the-art regional climate projections indicates a number of robust changes of the climate of the European Alps by the end of this century. Among these are a temperature increase in all seasons and at all elevations and a significant decrease in natural snow cover. Precipitation changes, however, are more subtle and subject to larger uncertainties. While annual precipitation sums are projected to remain rather constant until the end of the century, winter precipitation is projected to increase. Summer precipitation changes will most likely be negative, but increases are possible as well and are covered by the model uncertainty range. Precipitation extremes are expected to intensify in all seasons. The projected changes by the end of the century considerably depend on the greenhouse-gas scenario assumed, with the high-end RCP8.5 scenario being associated with the most prominent changes. Until the middle of the 21st century, however, it is projected that climate change in the Alpine area will only slightly depend on the specific emission scenario. These results indicate that harmful weather events in the Alpine area are likely to intensify in future. This particularly refers to extreme precipitation events, which can trigger flash floods and gravitational mass movements (debris flows, landslides) and lead to substantial damage. Convective precipitation extremes (thunderstorms) are additionally a threat to agriculture, forestry, and infrastructure, since they are often associated with strong wind gusts that cause windbreak in forests and with hail that causes damage in agriculture and infrastructure. Less spectacular but still very relevant is the effect of soil erosion on inclined arable land, caused by heavy precipitation. At the same time rising temperatures lead to longer vegetation periods, increased evapotranspiration, and subsequently to higher risk of droughts in the drier valleys of the Alps. Earlier snowmelt is expected to lead to a seasonal runoff shift in many catchments and the projected strong decrease of the natural snow cover will have an impact on tourism and, last but not least, on the cultural identity of many inhabitants of the Alpine area.

Article

Helfried Scheifinger

Phenology is the study of the seasonal timing of life cycle events. The Belgian botanist Charles Morren introduced the term in 1853, which is a combination of two Greek words, φαίνω, which means to show, to bring to light, make to appear, and λόγος, which means study, discourse, or reasoning. The global change discussion has stimulated phenological research, which as a consequence greatly advanced as science and evolved to one of the main climate impact indicators. Many of the earliest systematic efforts to collect phenological observations took place in countries sharing the Alps, most of which are still operating phenological networks. These phenological data sets are generally freely available to researchers, and numerous essential contributions to the topic of phenology and climate have been built on those data sets. Plant physiological processes underlying the ability of the plants to adapt to the year-to-year variability of the climate still constitutes largely a black box. Since the experiments of René Antoine Ferchault de Reaumur in the 18th century, it is known that temperature constitutes the main environmental driver of the seasonal development of the mid- to high-latitude plants. Second to temperature, day length governs the seasonal cycle of some species as an additional factor. Therefore, temperature-driven phenological models are able to simulate the year-to-year variability of phenological entry dates accurately enough for various applications, such as climate change impact research or numerical pollen forecast models, where the beginning of flowering of some plants is linked with the release of allergic pollen into the atmosphere. Large-scale circulation patterns, like the North Atlantic Oscillation, determine the frequency and intensity of warm and cold spells and decadal temperature trends over Europe. Combined anthropogenic and natural forcings explain the advance of spring phenology over the last 50 years, which is also clearly discernible in the area of the Alps. The early phenological spring starts in Western Europe, whereas later in the season it makes progress with a stronger southerly component across the Alps. The combined temporal and spatial trends have been studied along elevational gradients. Trends toward earlier entry dates are stronger at higher elevations, which indicates that the elevational phenological gradient has weakened since the mid-20th century. Similarly, the vegetation response to temperature is observed to decrease when moving from high to low latitudes. In contrast, the temporal response of plant phenology to increasing temperatures is less clear. Some works indeed demonstrate a decreasing temperature sensitivity with increasing temperature, which is explained as a result of a reduced winter chilling that delays spring phenology or of a limiting effect due to a shorter photoperiod. Other works report no change of temporal temperature sensitivity with increasing temperatures. Indigenous midlatitude vegetation is able to withstand large temperature variations during winter and spring. The safety margin between last frost events, budding, and leaf emergence was found to be uniform across elevations and taxa, except for beech trees. The probability of freezing damage to natural vegetation is almost nil, but late frost risk constitutes a real threat to fruit growers. The ratio of phenological and last frost trends is ambiguous. An increase or decrease in frost risk depends on regions, elevations, and species. Vegetation at high altitudes is exposed to a harsh climate with a long-lasting snow cover, low temperatures, and a short growing season. Snowmelt is a necessary but insufficient requirement for the start of the growing season, which has to be supplemented by plant-specific temperature sums to activate the growth of most alpine and subalpine species. The seasonal cycle has to be completed within a short time. Advances in remote sensing technology have provided access to high-resolution landscape scale phenological information. Especially in remote areas, like the Alps, in situ observations could be supplemented by satellite observations. Observations from both methods, I -situ and remote sensing, have been applied to describe spring vegetation dynamics, but the correlation between these data sets have typically been weak because of differences in temporal and spatial scales and resolutions. A successfully combined description of the seasonal vegetation cycle is still lacking. The area of the European Alps offers a wealth of long chronicles, containing historical phenological observations some of which have been extracted and digitized. Grape harvest dates belong to the most readily available historical phenological observations, which have helped reconstruct summer temperatures as far back as the 15th century.

Article

Marion Greilinger and Anne Kasper-Giebl

Mineral dust is one of the main natural sources of atmospheric particulate matter, with the Sahara being one of the most important source regions for the occurrence and deposition of mineral dust in Europe. The occurrence of dust events in the European Alps is documented via measurements of airborne dust and its deposits onto the glaciers. Dust events occur mainly in spring, summer, and early autumn. Dust layers are investigated in ice cores spanning the last millennium as well as in annual snow packs. They strongly affect the overall flux of dust-related compounds (e.g., calcium and magnesium), provide an alkaline input to wet deposition chemistry, and change the microbial abundance and diversity of the snow pack. Still airborne mineral dust particles can act as ice nuclei and cloud condensation nuclei, influencing the formation of cloud droplets and hence cloud formation and precipitation. Dust deposits on the snow lead to a darkening of the surface, referred to as “surface albedo reduction,” which influences the timing of the snowmelt and reduces the annual mass balance of glaciers, showing a direct link to glacier retreat as observed presently in a warming climate.