1-4 of 4 Results

  • Keywords: climate change impacts x
Clear all


Future Climate Change in the Baltic Sea Region and Environmental Impacts  

Jouni Räisänen

The warming of the global climate is expected to continue in the 21st century, although the magnitude of change depends on future anthropogenic greenhouse gas emissions and the sensitivity of climate to them. The regional characteristics and impacts of future climate change in the Baltic Sea countries have been explored since at least the 1990s. Later research has supported many findings from the early studies, but advances in understanding and improved modeling tools have made the picture gradually more comprehensive and more detailed. Nevertheless, many uncertainties still remain. In the Baltic Sea region, warming is likely to exceed its global average, particularly in winter and in the northern parts of the area. The warming will be accompanied by a general increase in winter precipitation, but in summer, precipitation may either increase or decrease, with a larger chance of drying in the southern than in the northern parts of the region. Despite the increase in winter precipitation, the amount of snow is generally expected to decrease, as a smaller fraction of the precipitation falls as snow and midwinter snowmelt episodes become more common. Changes in windiness are very uncertain, although most projections suggest a slight increase in average wind speed over the Baltic Sea. Climatic extremes are also projected to change, but some of the changes will differ from the corresponding change in mean climate. For example, the lowest winter temperatures are expected to warm even more than the winter mean temperature, and short-term summer precipitation extremes are likely to become more severe, even in the areas where the mean summer precipitation does not increase. The projected atmospheric changes will be accompanied by an increase in Baltic Sea water temperature, reduced ice cover, and, according to most studies, reduced salinity due to increased precipitation and river runoff. The seasonal cycle of runoff will be modified by changes in precipitation and earlier snowmelt. Global-scale sea level rise also will affect the Baltic Sea, but will be counteracted by glacial isostatic adjustment. According to most projections, in the northern parts of the Baltic Sea, the latter will still dominate, leading to a continued, although decelerated, decrease in relative sea level. The changes in the physical environment and climate will have a number of environmental impacts on, for example, atmospheric chemistry, freshwater and marine biogeochemistry, ecosystems, and coastal erosion. However, future environmental change in the region will be affected by several interrelated factors. Climate change is only one of them, and in many cases its effects may be exceeded by other anthropogenic changes.


Plant Phenology of the European Alps  

Helfried Scheifinger

Phenology is the study of the seasonal timing of life cycle events. The Belgian botanist Charles Morren introduced the term in 1853, which is a combination of two Greek words, φαίνω, which means to show, to bring to light, make to appear, and λόγος, which means study, discourse, or reasoning. The global change discussion has stimulated phenological research, which as a consequence greatly advanced as science and evolved to one of the main climate impact indicators. Many of the earliest systematic efforts to collect phenological observations took place in countries sharing the Alps, most of which are still operating phenological networks. These phenological data sets are generally freely available to researchers, and numerous essential contributions to the topic of phenology and climate have been built on those data sets. Plant physiological processes underlying the ability of the plants to adapt to the year-to-year variability of the climate still constitutes largely a black box. Since the experiments of René Antoine Ferchault de Reaumur in the 18th century, it is known that temperature constitutes the main environmental driver of the seasonal development of the mid- to high-latitude plants. Second to temperature, day length governs the seasonal cycle of some species as an additional factor. Therefore, temperature-driven phenological models are able to simulate the year-to-year variability of phenological entry dates accurately enough for various applications, such as climate change impact research or numerical pollen forecast models, where the beginning of flowering of some plants is linked with the release of allergic pollen into the atmosphere. Large-scale circulation patterns, like the North Atlantic Oscillation, determine the frequency and intensity of warm and cold spells and decadal temperature trends over Europe. Combined anthropogenic and natural forcings explain the advance of spring phenology over the last 50 years, which is also clearly discernible in the area of the Alps. The early phenological spring starts in Western Europe, whereas later in the season it makes progress with a stronger southerly component across the Alps. The combined temporal and spatial trends have been studied along elevational gradients. Trends toward earlier entry dates are stronger at higher elevations, which indicates that the elevational phenological gradient has weakened since the mid-20th century. Similarly, the vegetation response to temperature is observed to decrease when moving from high to low latitudes. In contrast, the temporal response of plant phenology to increasing temperatures is less clear. Some works indeed demonstrate a decreasing temperature sensitivity with increasing temperature, which is explained as a result of a reduced winter chilling that delays spring phenology or of a limiting effect due to a shorter photoperiod. Other works report no change of temporal temperature sensitivity with increasing temperatures. Indigenous midlatitude vegetation is able to withstand large temperature variations during winter and spring. The safety margin between last frost events, budding, and leaf emergence was found to be uniform across elevations and taxa, except for beech trees. The probability of freezing damage to natural vegetation is almost nil, but late frost risk constitutes a real threat to fruit growers. The ratio of phenological and last frost trends is ambiguous. An increase or decrease in frost risk depends on regions, elevations, and species. Vegetation at high altitudes is exposed to a harsh climate with a long-lasting snow cover, low temperatures, and a short growing season. Snowmelt is a necessary but insufficient requirement for the start of the growing season, which has to be supplemented by plant-specific temperature sums to activate the growth of most alpine and subalpine species. The seasonal cycle has to be completed within a short time. Advances in remote sensing technology have provided access to high-resolution landscape scale phenological information. Especially in remote areas, like the Alps, in situ observations could be supplemented by satellite observations. Observations from both methods, I -situ and remote sensing, have been applied to describe spring vegetation dynamics, but the correlation between these data sets have typically been weak because of differences in temporal and spatial scales and resolutions. A successfully combined description of the seasonal vegetation cycle is still lacking. The area of the European Alps offers a wealth of long chronicles, containing historical phenological observations some of which have been extracted and digitized. Grape harvest dates belong to the most readily available historical phenological observations, which have helped reconstruct summer temperatures as far back as the 15th century.


Health Problems in the European Alps Under Climate Change  

Lisbeth Weitensfelder, Hans-Peter Hutter, Kathrin Lemmerer, Michael Poteser, Peter Wallner, and Hanns Moshammer

The Alpine region in Central Europe and its populations in principle face the same types of threats to their health due to climate change as those in other parts of the world. But special geographical and climatic aspects of that region warrant closer and special examination of the connections between health and climate change in the Alps. These include small-scale variation, in some instances steep mountain slopes, and, above all, a larger-than-average increase in near-surface temperatures. To that end, there are main pathways between climate change and health: “Direct effects” describe rather short-term health effects of extreme weather events. Such events have occurred in the past, and therefore ample epidemiological evidence is available for the assessment of their impact. With climate change, such extreme events are predicted to change in frequency and intensity. “Indirect effects” refer to a more complex pathway where long-term changes of various natural and anthropogenic systems in reaction or adaptation to climate change exert adverse or sometimes also beneficial impacts on health. Such systems include ecosystems in which, for example, the prevalence of disease vectors or the allergenicity of pollen will change. But agriculture and forestry or the built environment are also affected by climate change and in turn affect the health of people. “Distant effects” are also rather indirect in nature. But in this pathway, changes due to climate change in other parts of the world affect the health in the Alpine region. Increasing migration into the Alpine region and changing migration patterns are important examples of this pathway. In some instances, most importantly regarding mental health, there is still a need for more studies focusing on the Alpine environments. But apart from these especially understudied topics, as the climate crisis evolves, there is generally a need for continuous research on the health effects of climate change and the potential of health promotion to create co-benefits.


Climate Change Impacts on Cities in the Baltic Sea Region  

Sonja Deppisch

While not all projected climate change impacts are affecting especially and directly at all the cities of the Baltic Sea region (bsr), including its basin, those cities expect very different direct as well as indirect impacts of climate change. The impacts are also a matter of location, if the city with its built structures and concentration of population is located in the northern or southern part of this basin, or more inland or directly at the coast. As there are many different definitions in use trying to determine what a city is, also in the different national contexts of the bsr, here it is cities in the sense of being human-dominated densely populated areas, which are also characterized by higher concentrations of built-up areas, infrastructure, and soil-sealing as well as socioeconomic roles than rural settlements are. Those characteristics render cities also especially vulnerable to climate change impacts while there are some opportunities arising too. There are many studies on climate change impacts on the Baltic Sea itself as well as on the various ecosystems, but the studies on the observed as well as potential future impacts of climate change on cities are disperse, many are also of a national character or concentrating on a small number of cases, leaving some cities not well studied at all. This renders an all-encompassing picture on the cities within the bsr difficult and even more complicated as every city provides a mix of built-up and open structures, of socioeconomic structure and role in a region, nation-state, or even on an international level, and further characteristics. Their urban development is dependent on manifold various interdependencies as well as climatic and nonclimatic drivers, such as, to name just a few diverse examples, urban to international governance processes, or topography and location, or also different socioeconomic vulnerabilities within the Baltic Sea basin. Accordingly every urban society and structure provides specific exposure, vulnerabilities, and adaptive capacity. Generally, the cities of the bsr have to deal with the impacts of temperature rise, natural hazards, and extreme events, and, depending on location and topography, with sea-level rise. With reference to temperature rise and the increase of heat waves, it is important to consider that cities of a certain size within the Baltic Sea basin contribute to their own urban climatic conditions and provide already urban heat islands. Also, urban planning and building facilitated by local political decisions contribute to the extent of urban floods as well as their damage, as these are regulating, for example, the sealing of soils or new built-up areas in flood-prone zones.