1-3 of 3 Results

  • Keywords: climate history x
Clear all

Article

The free troposphere is the location of important weather and climate processes. Here, horizontal and vertical transport of energy, mass, and momentum take place, and it holds greenhouse gases, water vapor, and clouds. The free troposphere therefore plays an important role in global climate feedback processes. Mountains provide important ecosystem services for a large lowland population. Mountain ecosystems may react particularly strongly to climatic changes. This is because mountains intersect important environmental and geoecological boundaries such as the snow line and the tree line. In a changing climate, these boundaries may shift. Climate change thus affects mountain glaciers, water resources, and mountain ecosystems. Climates of mountains and of the free troposphere have attracted scientists of the enlightenment and have been studied scientifically at least since the 18th century. High-altitude observatories were installed in the late 19th century, and upper-air measurements were started soon afterwards. However, even in the early 21st century, the climate observing systems do not well cover mountain regions and specifically mountain peaks. The temperature of the free troposphere is dominated by horizontal and vertical transport of sensible and latent heat, condensation and release of latent heat, and radiation to space. Mountain peaks sometimes reach into the free troposphere, but at the same time also share characteristics of surface climate. They are strongly influenced by radiative processes of the surrounding surface, while during the day they are often within the atmospheric boundary layer. With respect to climate change, temperature trends are amplified in the tropical upper-troposphere relative to the surface due to latent heat release, while in the Arctic the surface warms faster than the free atmosphere due to strong inversions and due to feedback processes operating at the surface. Mountain peaks may see both types of amplification. Several processes have been suggested to cause an elevation dependent warming, the most important of which arguably is the snow-albedo feedback. Elevation dependent warming is also seen in model studies and in observations, although detecting this signal in observations turns out rather difficult outside the tropics due to high variability and sometimes low-data quality. The observed climatic changes are expected to continue into the future.

Article

The growing concern about global warming has turned focus in Sweden and other Baltic countries toward the connection between history and climate. Important steps have been taken in the scientific reconstruction of climatic parables. Historic climate data have been published and analyzed, and various proxy data have been used to reconstruct historic climate curves. The results have revealed an ongoing regional warming from the late 17th to the early 21st century. The development was not continuous, however, but went on in a sequence of warmer and colder phases. Within the fields of history and socially oriented climate research, the industrial revolution has often been seen as a watershed between an older and a younger climate regime. The breakthrough of the industrial society was a major social change with the power to influence climate. Before this turning point, man and society were climate dependent. Weather and short-term climate fluctuations had major impacts on agrarian culture. When the crops failed several years in sequence, starvation and excess mortality followed. As late as 1867–1869, northern Sweden and Finland were struck by starvation due to massive crop failures. Although economic activities in the agricultural sector had climatic effects before the industrial society, when industrialization took off in Sweden in the 1880s it brought an end to the large-scale starvations, but also the start of an economic development that began to affect the atmosphere in a new and broader way. The industrial society, with its population growth and urbanization, created climate effects. Originally, however, the industrial outlets were not seen as problems. In the 18th century, it was thought that agricultural cultivation could improve the climate, and several decades after the industrial take-off there still was no environmental discourse in the Swedish debate. On the contrary, many leading debaters and politicians saw the tall chimneys, cars, and airplanes as hopeful signs in the sky. It was not until the late 1960s that the international environmental discourse reached Sweden. The modern climate debate started to make its imprints as late as the 1990s. During the last two decades, the Swedish temperature curve has unambiguously turned upwards. Thus, parallel to the international debate, the climate issue has entered the political agenda in Sweden and the other Nordic countries. The latest development has created a broad political consensus in favor of ambitious climate goals, and the people have gradually started to adapt their consumption and lifestyles to the new prerequisites.Although historic climate research in Sweden has had a remarkable expansion in the last decades, it still leans too much on its climate change leg. The clear connection between the climate fluctuations during the last 300 years and the major social changes that took place in these centuries needs to be further studied.

Article

Lars-Otto Reiersen and Robert W. Corell

This overview of climate observation, monitoring, and research for the Arctic region outlines the key elements essential to an enhanced understanding of the unprecedented climate change in the region and its global influences. The first recorded observation of sea ice extent around Svalbard date back to the whaling activities around 1600. Over the following 300 years there are periodic and inadequate observations of climate and sea ice from explorers seeking a northern sea route for sailing to Asia or reaching the North Pole. Around 1900 there were few fixed meteorological stations in the circumpolar North. During the Second World War and the following Cold War, the observation network increased significantly due to military interest. Since the 1970s the use of satellites has improved the climate and meteorological observations of Arctic areas, and advancements in marine observations (beneath the sea surface and within oceanic sediments) have contributed to a much improved network of climate and meteorological variables. Climate change in the Arctic and its possible effects within the Arctic and on global climate such as extreme weather and sea level rise were first reported in the ACIA 2005 report. Since then there has been a lot of climate-related assessments based on data from the Arctic and ongoing processes within the Arctic that are linked to global systems.