1-2 of 2 Results

  • Keywords: equatorial waves x
Clear all

Article

Rainfall over Africa varies across timescales of a few days to several weeks due to several tropical and extratropical modes of variability. Excessive rains or prolonged drought regularly result in natural disasters and have thus a severe impact on the local economy, agriculture, spread of diseases, and entire ecosystems. The dynamical nature of the atmosphere allows the existence of planetary balanced modes, which are called Rossby waves, and smaller-scale unbalanced inertio-gravity (IG) waves. The former, which are more rotational, arise from the horizontal pressure gradient force, while for the latter gravity acts as the restoring force, making their flow pattern more divergent. The main source of variability in the extratropics stems from Rossby waves. At the equator, further types of convectively coupled equatorial waves (CCEWs) exist, namely Kelvin and mixed Rossby-gravity (MRG) waves. As the slowest intraseasonal tropical mode, the Madden–Julian Oscillation (MJO), which is related to Kelvin and Rossby waves, acts on a timescale of 30 to 90 days. Although it is primarily a planetary mode, the MJO has a specific “flavor” over the African continent. On the short intraseasonal timescale of 10 to 25 days, equatorial Rossby (ER) waves and the internal modes of the West African monsoon, the quasi-biweekly zonal dipole (QBZD) and the Sahel mode, modulate rainfall. On the synoptic timescale of a few days to a week, African easterly waves (AEWs) are a dominant mode over West Africa, whereas Kelvin waves predominantly modulate rainfall over equatorial Africa. Extratropical influences on northern and southern Africa manifest themselves in Rossby wave trains, which modulate synoptic to intraseasonal rainfall through tropical rainfall plumes, cold air surges, and upper-tropospheric dry air intrusions. Furthermore, the Saharan heat low (SHL) acts as a link between the northern hemispheric extratropics and tropics. Finally, the Indian monsoon, the Atlantic, Indian, and the Pacific Oceans can remotely affect the intraseasonal variability of African rainfall. Forecasting synoptic to intraseasonal rainfall variability is an integral part of seamless prediction between the weather and climate regimes. In the early 21st century, numerical weather prediction (NWP) systems can forecast larger intraseasonal signals such as the MJO several weeks into the future, but they still struggle to forecast shorter scale features reliably. Besides NWP, statistical models can successfully forecast intraseasonal variability of rainfall. Due to the relevance of synoptic to intraseasonal rainfall variability for African societies, early warning systems (EWSs) have been developed to mitigate impacts.

Article

Western and Central Equatorial Africa (WCEA), home to the Congo rainforests, is the green heart of the otherwise dry continent of Africa. Despite its crucial role in the Earth system, WCEA’s climate variability has received little attention compared to the rest of Africa. Climate variability in the region is a result of complex interactions among various features acting on local and global scales. The mesoscale convective systems (MCSs) that have a preferentially westward propagation and present a distinct diurnal cycle are the main source of rainfall in the region. As a result of strong MCS activity, WCEA stands out as a convective anomaly within the tropics and experiences the world’s most intense thunderstorms as well as the highest lightning flash rates. The moisture of the region is supplied primarily from the Atlantic Ocean, with additional contributions from local recycling and East Africa. WCEA, in turn, serves as a moisture source for other parts of the continent. One striking characteristic of WCEA is its intrinsic heterogeneity with respect to interannual variability of rainfall, resulting in delineation of the region primarily in the zonal direction. This is in contrast to the meridionally oriented spatial variability of the annual cycle and underlines the fact that driving factors of the two can be quite different. The annual cycle is mainly determined by the seasonal excursion of the sun. However, the interannual and intraseasonal variability of the region are modulated by remote forcings from all three oceans, reflected via zonal atmospheric cells and equatorial wave dynamics. The local atmospheric jets and regional Walker-like circulations also contribute to WCEA’s climate variability by modulating the moisture transport and vertical motion. The region has experienced an increasing rate of deforestation in recent decades and has made a significant contribution to the global biomass burning emissions that can alter regional and global circulation, along with energy and water cycles. The mean annual temperature of the region has increased by about 1°C in the past 70 years. The annual rainfall over the same period presents a negative trend, though that is quite negligible in the eastern sector of the region.