1-3 of 3 Results

  • Keywords: extreme precipitation x
Clear all


Andreas Gobiet and Sven Kotlarski

The analysis of state-of-the-art regional climate projections indicates a number of robust changes of the climate of the European Alps by the end of this century. Among these are a temperature increase in all seasons and at all elevations and a significant decrease in natural snow cover. Precipitation changes, however, are more subtle and subject to larger uncertainties. While annual precipitation sums are projected to remain rather constant until the end of the century, winter precipitation is projected to increase. Summer precipitation changes will most likely be negative, but increases are possible as well and are covered by the model uncertainty range. Precipitation extremes are expected to intensify in all seasons. The projected changes by the end of the century considerably depend on the greenhouse-gas scenario assumed, with the high-end RCP8.5 scenario being associated with the most prominent changes. Until the middle of the 21st century, however, it is projected that climate change in the Alpine area will only slightly depend on the specific emission scenario. These results indicate that harmful weather events in the Alpine area are likely to intensify in future. This particularly refers to extreme precipitation events, which can trigger flash floods and gravitational mass movements (debris flows, landslides) and lead to substantial damage. Convective precipitation extremes (thunderstorms) are additionally a threat to agriculture, forestry, and infrastructure, since they are often associated with strong wind gusts that cause windbreak in forests and with hail that causes damage in agriculture and infrastructure. Less spectacular but still very relevant is the effect of soil erosion on inclined arable land, caused by heavy precipitation. At the same time rising temperatures lead to longer vegetation periods, increased evapotranspiration, and subsequently to higher risk of droughts in the drier valleys of the Alps. Earlier snowmelt is expected to lead to a seasonal runoff shift in many catchments and the projected strong decrease of the natural snow cover will have an impact on tourism and, last but not least, on the cultural identity of many inhabitants of the Alpine area.


Situated at the southern edge of the Tibetan Plateau (TP), the Hindu-Kush-Himalayas-Gangetic (HKHG) region is under the clear and present danger of climate change. Flash-flood, landslide, and debris flow caused by extreme precipitation, as well as rapidly melting glaciers, threaten the water resources and livelihood of more than 1.2 billion people living in the region. Rapid industrialization and increased populations in recent decades have resulted in severe atmospheric and environmental pollution in the region. Because of its unique topography and dense population, the HKHG is not only a major source of pollution aerosol emissions, but also a major receptor of large quantities of natural dust aerosols transported from the deserts of West Asia and the Middle East during the premonsoon and early monsoon season (April–June). The dust aerosols, combined with local emissions of light-absorbing aerosols, that is, black carbon (BC), organic carbon (OC), and mineral dust, can (a) provide additional powerful heating to the atmosphere and (b) allow more sunlight to penetrate the snow layer by darkening the snow surface. Both effects will lead to accelerated melting of snowpack and glaciers in the HKHG region, amplifying the greenhouse warming effect. In addition, these light-absorbing aerosols can interact with monsoon winds and precipitation, affecting extreme precipitation events in the HKHG, as well as weather variability and climate change over the TP and the greater Asian monsoon region.


Filippo Giorgi

Dynamical downscaling has been used for about 30 years to produce high-resolution climate information for studies of regional climate processes and for the production of climate information usable for vulnerability, impact assessment and adaptation studies. Three dynamical downscaling tools are available in the literature: high-resolution global atmospheric models (HIRGCMs), variable resolution global atmospheric models (VARGCMs), and regional climate models (RCMs). These techniques share their basic principles, but have different underlying assumptions, advantages and limitations. They have undergone a tremendous growth in the last decades, especially RCMs, to the point that they are considered fundamental tools in climate change research. Major intercomparison programs have been implemented over the years, culminating in the Coordinated Regional climate Downscaling EXperiment (CORDEX), an international program aimed at producing fine scale regional climate information based on multi-model and multi-technique approaches. These intercomparison projects have lead to an increasing understanding of fundamental issues in climate downscaling and in the potential of downscaling techniques to provide actionable climate change information. Yet some open issues remain, most notably that of the added value of downscaling, which are the focus of substantial current research. One of the primary future directions in dynamical downscaling is the development of fully coupled regional earth system models including multiple components, such as the atmosphere, the oceans, the biosphere and the chemosphere. Within this context, dynamical downscaling models offer optimal testbeds to incorporate the human component in a fully interactive way. Another main future research direction is the transition to models running at convection-permitting scales, order of 1–3 km, for climate applications. This is a major modeling step which will require substantial development in research and infrastructure, and will allow the description of local scale processes and phenomena within the climate change context. Especially in view of these future directions, climate downscaling will increasingly constitute a fundamental interface between the climate modeling and end-user communities in support of climate service activities.