1-3 of 3 Results

  • Keywords: glaciers x
Clear all

Article

In equatorial East Africa, glaciers still exist on Mount Kenya, Kilimanjaro, and Ruwenzori. The decreasing ice extent has been documented by field reports since the end of the 19th century and a series of mappings. For Mount Kenya, the mappings are of 1947, 1963, 1987, 1993, and 2004, with more detailed mappings of Lewis Glacier in 1934, 1958, 1963, 1974, 1978, 1982, 1985, 1986, 1990, and 1993. For Kilimanjaro, the sequence is 1912, 1953, 1976, 1989, and 2000. For Ruwenzori (for which information is more scarce), the information is from 1906, 1955, and 1990. Photographs are valuable complementary evidence. At Lewis Glacier on Mount Kenya, measurements of mass budget and ice flow have been conducted over decades. The climatic forcing of ice recession in East Africa at the onset in the 1880s was radiationally controlled, affecting the most exposed locations. Later warming caused further ice shrinkage, except on the summit plateau of Kilimanjaro, above the freezing level. Whereas the ice recession in the Ecuadorian Andes and New Guinea began in the middle of the 19th century, plausibly caused by warming, the late onset in East Africa should be appreciated in the context of large-scale circulation changes evidenced by the historical ship observations in the equatorial Indian Ocean.

Article

The European Alps feature a unique situation with the densest network of long-term instrumental climate observations and anthropogenic emission sources located in the immediate vicinity of glaciers suitable for ice core studies. To archive atmospheric changes in an undisturbed sequence of firn and ice layers, ice core drilling sites require temperatures low enough to minimize meltwater percolation. In the Alps, this implies a restriction to the highest summit glaciers of comparatively small horizontal and vertical extension (i.e., with typical ice thickness not much exceeding 100 m). As a result, Alpine ice cores offer either high-resolution or long-term records, depending on the net snow accumulation regime of the drilling site. High-accumulation Alpine ice cores have been used with great success to study the anthropogenic influence on aerosol-related atmospheric impurities over the last 100 years or so. However, respective long-term reconstructions (i.e., substantially exceeding the instrumental era) from low-accumulation sites remain comparatively sparse. Accordingly, deciphering Alpine ice cores as long-term climate records deserves special emphasis. Certain conditions must exist for Alpine ice cores to serve as climate archives, and this is important in particular regarding the challenges and achievements that have significance for ice cores from other mountain areas: (a) a reliable chronology is the fundamental prerequisite for interpreting any ice core proxy time series. Advances in radiometric ice dating and annual layer counting offer the tools to crucially increase dating precision in the preinstrumental era. (b) Glacier flow effects and spatio-seasonal snow deposition variability challenge linking the ice core proxy signals to the respective atmospheric variability (e.g., of temperature, mineral dust, and impurity concentrations). Here, assistance comes from combining multiple ice cores from one site and from complementary meteorological, glaciological, and geophysical surveys. (c) As Alpine ice cores continue to advance their contribution to Holocene climate science, exploring the link to instrumental, historical, and other natural climate archives gains increasing importance.

Article

Wilfried Haeberli, Johannes Oerlemans, and Michael Zemp

Like many comparable mountain ranges at lower latitudes, the European Alps are increasingly losing their glaciers. Following roughly 10,000 years of limited climate and glacier variability, with a slight trend of increasing glacier sizes to Holocene maximum extents of the Little Ice Age, glaciers in the Alps started to generally retreat after 1850. Long-term observations with a monitoring network of unique density document this development. Strong acceleration of mass losses started to take place after 1980 as related to accelerating atmospheric temperature rise. Model calculations, using simple to high-complexity approaches and relating to individual glaciers as well as to large samples of glaciers, provide robust results concerning scenarios for the future: under the influence of greenhouse-gas forced global warming, glaciers in the Alps will largely disappear within the 21st century. Anticipating and modeling new landscapes and land-forming processes in de-glaciating areas is an emerging research field based on modeled glacier-bed topographies that are likely to become future surface topographies. Such analyses provide a knowledge basis to early planning of sustainable adaptation strategies, for example, concerning opportunities and risks related to the formation of glacial lakes in over-deepened parts of presently still ice-covered glacier beds.