1-4 of 4 Results

  • Keywords: hazards x
Clear all

Article

Philipp Schmidt-Thomé

Climate change adaptation is the ability of a society or a natural system to adjust to the (changing) conditions that support life in a certain climate region, including weather extremes in that region. The current discussion on climate change adaptation began in the 1990s, with the publication of the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Since the beginning of the 21st century, most countries, and many regions and municipalities have started to develop and implement climate change adaptation strategies and plans. But since the implementation of adaptation measures must be planned and conducted at the local level, a major challenge is to actually implement adaptation to climate change in practice. One challenge is that scientific results are mainly published on international or national levels, and political guidelines are written at transnational (e.g., European Union), national, or regional levels—these scientific results must be downscaled, interpreted, and adapted to local municipal or community levels. Needless to say, the challenges for implementation are also rooted in a large number of uncertainties, from long time spans to matters of scale, as well as in economic, political, and social interests. From a human perspective, climate change impacts occur rather slowly, while local decision makers are engaged with daily business over much shorter time spans. Among the obstacles to implementing adaptation measures to climate change are three major groups of uncertainties: (a) the uncertainties surrounding the development of our future climate, which include the exact climate sensitivity of anthropogenic greenhouse gas emissions, the reliability of emission scenarios and underlying storylines, and inherent uncertainties in climate models; (b) uncertainties about anthropogenically induced climate change impacts (e.g., long-term sea level changes, changing weather patterns, and extreme events); and (c) uncertainties about the future development of socioeconomic and political structures as well as legislative frameworks. Besides slow changes, such as changing sea levels and vegetation zones, extreme events (natural hazards) are a factor of major importance. Many societies and their socioeconomic systems are not properly adapted to their current climate zones (e.g., intensive agriculture in dry zones) or to extreme events (e.g., housing built in flood-prone areas). Adaptation measures can be successful only by gaining common societal agreement on their necessity and overall benefit. Ideally, climate change adaptation measures are combined with disaster risk reduction measures to enhance resilience on short, medium, and long time scales. The role of uncertainties and time horizons is addressed by developing climate change adaptation measures on community level and in close cooperation with local actors and stakeholders, focusing on strengthening resilience by addressing current and emerging vulnerability patterns. Successful adaptation measures are usually achieved by developing “no-regret” measures, in other words—measures that have at least one function of immediate social and/or economic benefit as well as long-term, future benefits. To identify socially acceptable and financially viable adaptation measures successfully, it is useful to employ participatory tools that give all involved parties and decision makers the possibility to engage in the process of identifying adaptation measures that best fit collective needs.

Article

Robyn S. Wilson, Sarah M. McCaffrey, and Eric Toman

Throughout the late 19th century and most of the 20th century, risks associated with wildfire were addressed by suppressing fires as quickly as possible. However, by the 1960s, it became clear that fire exclusion policies were having adverse effects on ecological health, as well as contributing to larger and more damaging wildfires over time. Although federal fire policy has changed to allow fire to be used as a management tool on the landscape, this change has been slow to take place, while the number of people living in high-risk wildland–urban interface communities continues to increase. Under a variety of climate scenarios, in particular for states in the western United States, it is expected that the frequency and severity of fires will continue to increase, posing even greater risks to local communities and regional economies. Resource managers and public safety officials are increasingly aware of the need for strategic communication to both encourage appropriate risk mitigation behavior at the household level, as well as build continued public support for the use of fire as a management tool aimed at reducing future wildfire risk. Household decision making encompasses both proactively engaging in risk mitigation activities on private property, as well as taking appropriate action during a wildfire event to protect personal safety. Very little research has directly explored the connection between climate-related beliefs, wildfire risk perception, and action; however, the limited existing research suggests that climate-related beliefs have little direct effect on wildfire-related action. Instead, action appears to depend on understanding the benefits of different mitigation actions and in engaging the public in interactive, participatory communication programs that build trust between the public and natural resource managers. A relatively new line of research focuses on resource managers as critical decision makers in the risk management process, pointing to the need to thoughtfully engage audiences other than the lay public to improve risk management. Ultimately, improving the decision making of both the public and managers charged with mitigating the risks associated with wildfire can be achieved by carefully addressing several common themes from the literature. These themes are to (1) promote increased efficacy through interactive learning, (2) build trust and capacity through social interaction, (3) account for behavioral constraints and barriers to action, and (4) facilitate thoughtful consideration of risk-benefit tradeoffs. Careful attention to these challenges will improve the likelihood of successfully managing the increasing risks that wildfire poses to the public and ecosystems alike in a changing climate.

Article

Wilfried Haeberli, Johannes Oerlemans, and Michael Zemp

Like many comparable mountain ranges at lower latitudes, the European Alps are increasingly losing their glaciers. Following roughly 10,000 years of limited climate and glacier variability, with a slight trend of increasing glacier sizes to Holocene maximum extents of the Little Ice Age, glaciers in the Alps started to generally retreat after 1850. Long-term observations with a monitoring network of unique density document this development. Strong acceleration of mass losses started to take place after 1980 as related to accelerating atmospheric temperature rise. Model calculations, using simple to high-complexity approaches and relating to individual glaciers as well as to large samples of glaciers, provide robust results concerning scenarios for the future: under the influence of greenhouse-gas forced global warming, glaciers in the Alps will largely disappear within the 21st century. Anticipating and modeling new landscapes and land-forming processes in de-glaciating areas is an emerging research field based on modeled glacier-bed topographies that are likely to become future surface topographies. Such analyses provide a knowledge basis to early planning of sustainable adaptation strategies, for example, concerning opportunities and risks related to the formation of glacial lakes in over-deepened parts of presently still ice-covered glacier beds.

Article

Konrad Ott and Frederike Neuber

The means to combat dangerous anthropogenic climate change constitutes a portfolio. Beside abatement of greenhouse gas emissions, this portfolio entails adaptation to changing climate conditions, and so-called climate engineering measures. The overall portfolio has to be judged on technical, economic, and moral grounds. This requires an in-depth understanding of the moral aspects of climate engineering options. Climate engineering (CE) is a large-scale intentional intervention either in carbon cycles (carbon dioxide removal; CDR) or in solar radiation (solar radiation management; SRM). The ethical discourse on climate engineering has gained momentum since the 2010s. The set of arguments pro and contra specific CE technologies constitute a vast landscape of discourse. Single arguments must be analyzed with scrutiny according to their ethical background, their normative premises, their inferential logic, and their practical and political consequences. CE ethics, then, has a threefold task: (a) it must suppose a solid understanding of different CE technologies and their risks; (b) it has to analyze the moral arguments that speak in favor or against specific CE technologies; and (c) it has to assess the impacts of accepting or rejecting specific arguments for the overall climate portfolio’s design. The global climate portfolio differs from ordinary investment portfolios since stakes are huge, moral values in dispute, risks and uncertainties pervasive, and collective decision-making urgent. Any argument has implications of how to design the overall portfolio best. From an ethical perspective, however, one must reflect upon the premises and inferential structures of the arguments as such. Analysis of arguments and mapping them logically can be seen as core business of CE ethics. Highly general arguments about CE usually fall short, since the diverse features of individual technologies may not be addressed by overarching arguments that necessarily homogenize different technologies. It can be stated with confidence that the moral profiles of CDR and SRM are highly different. Every single deployment scheme ought to be judged specifically, for it is a huge difference to propose SRM as a substitute for abatement, or to embed it within a comprehensive climate portfolio including abatement and adaptation, where SRM will be used sporadically and only for a matter of decades.