1-5 of 5 Results

  • Keywords: stakeholders x
Clear all


Agricultural Extension and Climate Change Communication  

Linda S. Prokopy, Wendy-Lin Bartels, Gary Burniske, and Rebecca Power

Agricultural extension has evolved over the last 200 years from a system of top-down dissemination of information from experts to farmers to a more complex system, in which a diversity of knowledge producers and farmers work together to co-produce information. Following a detailed history of the evolution of extension in the United States, this article describes an example from the southeastern United States that illustrates how innovative institutional arrangements enable land-grant universities to actively engage farmers and extension agents as key partners in the knowledge generation process. A second U.S. example shows that private retailers are more influential than extension in influencing large-scale farmers’ farm management decisions in the midwestern United States. However, these private retailers trust extension as a source of climate change information and thus partnerships are important for extension. Nongovernmental organizations (NGOs) have been an important source of extension services for smallholder farmers across the world, and examples from the NGO CARE indicate that a participatory and facilitative approach works well for climate change communication. Collectively, these examples emphasize that the role of agricultural extension in climate change communication is essential in the context of both developed and developing countries and with both smallholder farmers and large-scale farmers. These case studies illustrate the effectiveness of a co-production approach, the importance of partners and donors, and the changing landscape of agricultural extension delivery.


Communicating about Solar Energy and Climate Change  

Tarla Rai Peterson and Cristi C. Horton

Transitioning to renewable energy systems requires changing the ways people interact with energy as well as technological change. This shift involves social changes that include modifications in norms, policies, and governance. Multiple sociopolitical factors shape the likelihood that solar energy will emerge as a significant component in energy systems around the world. This article describes ways climate change communication may be strategically employed to encourage substantial deployment of solar installations and other renewable energy resources as part of the innovations that contribute to transition and transformation of current energy systems. Understanding how communication may contribute to integration of more solar power into energy systems begins with examining current public awareness of and engagement with solar energy, as well as other low-carbon energy resources. With this foundation, climate change communication can contribute to research, development, and deployment of solar energy installations, by facilitating strategic alignment of solar energy with existing interests and preferences of its stakeholders. These stakeholders include elites who fear that shifting the energy system away from fossil fuels threatens their political influence and financial profits, energy workers who fear it will bring further reductions in already reduced wages, and those who perceive fossil fuels as the only alternative to opportunistic mixtures of animal waste and biofuel. Climate change communicators have the unenviable task of helping all of these groups imagine and participate in transitioning energy systems toward greater reliance on renewable energy sources, such as Sun. This article briefly describes the development and implementation solar energy technologies, and suggests how strategic communication may contribute to further implementation. It concludes with examples of differential deployment trajectories of solar energy in the Navajo Nation and Germany. These cases demonstrate that neither the endowment of natural resources nor the material energy needs of a location fully explain energy decisions. Indeed, social dimensions such as culture, economics, and governance play equally important roles. This provides numerous opportunities for climate change communicators to strategically highlight the ways that solar energy responds to immediate needs and desires, while simultaneously contributing to climate change mitigation.


Climate Change Communication in Austria  

Markus Rhomberg

Research on climate change communication is a neglected field in Austria. Only slowly, scientists as well as policy makers are entering the domain of communicating climate change, especially in subprojects of larger funding initiatives by the Austrian Environment Ministry and the Ministry for Transport, Innovation and Technology. In the field of communication research, only sporadic studies can be found: Some of them are investigating science-policy-interfaces and communication among stakeholders; others are focusing on awareness of climate change, especially in climate sensitive areas like (winter) tourism, agriculture, and forestry, which are significant economic fields in Austria and in which major efforts have to be taken to enhance adaptive capacities. Only a few studies are dealing with media representations of climate. Therefore, this article outlines a future research program, based on the assessment of existing scholarship. More scientific efforts should be given to the following fields of research: public communication of stakeholders, studies on media representation of climate change and framing and its effects as well as comparative studies with countries sharing comparable climate scenarios, and the strong need for adapting to climate change (e.g., from Alpine regions) as well as similar political structures.


Securing High Levels of Sustainability in Transportation Under Future Climate Change  

Christoph Matulla and Katharina Enigl

It is well known that global temperatures have risen by about 1°C since the second half of the 19th century and that the major part of global warming experienced since the mid-20th century is due to anthropogenic greenhouse gas (GHG) emissions. The transportation sector contributes approximately 30% of the GHG emissions released in the European Union (EU) and is a significant driver of climate change. Therefore, most discussions and initiatives regarding transportation have been geared toward mitigation (reducing GHG emissions). However, transportation is exposed to climate change impacts at the same time. Since climate change will continue to unfold in the coming decades, mitigation alone is not enough to provide protection, and adaptation efforts will also be needed. Extreme weather events, which are expected to occur more frequently and violently in the wake of climate change over the decades to come, pose a considerable challenge to the resilience, reliability, and safety of transportation systems. It has become obvious that these challenges cannot be met with mitigation (reduction of GHG emissions) alone but have to be addressed by suitable adaptation measures. Appropriate actions will help to reduce the risk of bad investments and damage to transport infrastructure, and their identification is not trivial because of the often long lifespan (many decades) of infrastructure and the uncertainty involved in forecasting the extent of climate change’s impacts over long periods of time. It is therefore crucial to incorporate into transportation planning the design of appropriate measures for adaptation to the impact of climate change. However, for some reason (so-called barriers to adaptation), adaptation has rarely been adopted by stakeholders. The barriers include, for example, insufficient understanding of climate-related hazards and the vulnerability of the transport system to them; the lack of appropriate procedures; the lack of perception of the urgency; the impression that there is no need for a forward-looking, proactive integration of adaptation strategies into transport planning; the perception that the uncertainties are too great for adaptation planning; and budget challenges. Results of a survey among stakeholders in transportation—conducted in order to establish land transportation as the World Meteorological Organization’s new Service Delivery Target—revealed that stakeholders’ reluctance to implement the design of adaptation strategies into transportation planning, which was quite pronounced only a few years ago, has given way to general acceptance. The transport sector has a dual role—on the one hand, as a major driver of climate change, and on the other hand, as a sector vulnerable to climate change impacts. The consequences of climate change for transportation and the strategies for dealing with them by mitigation and adaptation are paramount. Mitigation and adaptation complement each other in attaining optimal protection of transportation against climate change’s impacts. Finally, the implementation of appropriate adaptation strategies needs to support decision makers in the design of forward-looking strategies that enhance the sustainability of infrastructure. An example of such implementation has occurred in the complex terrain of the European Alps.


Methods for Assessing Journalistic Decisions, Advocacy Strategies, and Climate Change Communication Practices  

Senja Post

Research in the field of journalistic decisions, advocacy strategies, and communication practices is very heterogeneous, comprising diverse groups of actors and research questions. Not surprisingly, various methods have been applied to assess actors’ motives, strategies, intentions, and communication behaviors. This article provides an overview of the most common methods applied—i.e., qualitative and quantitative approaches to textual analyses, interviewing techniques, observational and experimental research. After discussing the major strengths and weaknesses of each method, an outlook on future research is given. One challenge of the future study of climate change communication will be to account for its dynamics, with various actors reacting to one another in their public communication. To better approximate such dynamics in the future, more longitudinal research will be needed.