1-2 of 2 Results

  • Keywords: supercell x
Clear all

Article

Formation and Development of Convective Storms  

R. J. Trapp

Cumulus clouds are pervasive on earth, and play important roles in the transfer of energy through the atmosphere. Under certain conditions, shallow, nonprecipitating cumuli may grow vertically to occupy a significant depth of the troposphere, and subsequently may evolve into convective storms. The qualifier “convective” implies that the storms have vertical accelerations that are driven primarily, though not exclusively, by buoyancy over a deep layer. Such buoyancy in the atmosphere arises from local density variations relative to some base state density; the base state is typically idealized as a horizontal average over a large area, which is also considered the environment. Quantifications of atmospheric buoyancy are typically expressed in terms of temperature and humidity, and allow for an assessment of the likelihood that convective clouds will form or initiate. Convection initiation is intimately linked to existence of a mechanism by which air is vertically lifted to realize this buoyancy and thus accelerations. Weather fronts and orography are the canonical lifting mechanisms. As modulated by an ambient or environmental distribution of temperature, humidity, and wind, weather fronts also facilitate the transition of convective clouds into storms with locally heavy rain, lightning, and other possible hazards. For example, in an environment characterized by winds that are weak and change little with distance above the ground, the storms tend to be short lived and benign. The structure of the vertical drafts and other internal storm processes under weak wind shear—i.e., a small change in the horizontal wind over some vertical distance—are distinct relative to those when the environmental wind shear is strong. In particular, strong wind shear in combination with large buoyancy favors the development of squall lines and supercells, both of which are highly coherent storm types. Besides having durations that may exceed a few hours, both of these storm types tend to be particularly hazardous: squall lines are most apt to generate swaths of damaging “straight-line” winds, and supercells spawn the most intense tornadoes and are responsible for the largest hail. Methods used to predict convective-storm hazards capitalize on this knowledge of storm formation and development.

Article

Forecasting Severe Convective Storms  

Stephen Corfidi

Forecasting severe convective weather remains one of the most challenging tasks facing operational meteorology today, especially in the mid-latitudes, where severe convective storms occur most frequently and with the greatest impact. The forecast difficulties reflect, in part, the many different atmospheric processes of which severe thunderstorms are a by-product. These processes occur over a wide range of spatial and temporal scales, some of which are poorly understood and/or are inadequately sampled by observational networks. Therefore, anticipating the development and evolution of severe thunderstorms will likely remain an integral part of national and local forecasting efforts well into the future. Modern severe weather forecasting began in the 1940s, primarily employing the pattern recognition approach throughout the 1950s and 1960s. Substantial changes in forecast approaches did not come until much later, however, beginning in the 1980s. By the start of the new millennium, significant advances in the understanding of the physical mechanisms responsible for severe weather enabled forecasts of greater spatial and temporal detail. At the same time, technological advances made available model thermodynamic and wind profiles that supported probabilistic forecasts of severe weather threats. This article provides an updated overview of operational severe local storm forecasting, with emphasis on present-day understanding of the mesoscale processes responsible for severe convective storms, and the application of recent technological developments that have revolutionized some aspects of severe weather forecasting. The presentation, nevertheless, notes that increased understanding and enhanced computer sophistication are not a substitute for careful diagnosis of the current meteorological environment and an ingredients-based approach to anticipating changes in that environment; these techniques remain foundational to successful forecasts of tornadoes, large hail, damaging wind, and flash flooding.