1-2 of 2 Results

  • Keywords: typhoons x
Clear all

Article

The Chinese meteorological records could be traced back to the oracle-bone inscriptions of the Shang Dynasty (c. 1600 bc–c. 1046 bc). For the past 3,000 years, continuous meteorological records are available in official histories, chronicles, local gazetteers, diaries, and other historical materials. Ever since the Qin Dynasty (221–207 bc), precipitation reports to the central government were officially organized; however, only those of the Qing Dynasty (1644–1912 ad) are extant, and they have been widely used to reconstruct precipitation variability. Modern meteorological knowledge began to be introduced in China during the late Ming Dynasty (1368–1644 ad). Modern meteorological observation possibly began in the 17th century, whereas continuous meteorological observation records go back to the mid-19th century. Previous researches have reconstructed the chronologies of the temperature change in China during the past 2,000 years, and the Medieval Warm Period and Little Ice Age were identified. With regard to precipitation variability, yearly charts of dryness/wetness in China for the past 500 years were produced. Several chronologies of dust storm, plum rain (Meiyu), and typhoon were also established. Large volcanic eruptions resulted in short scale abrupt cooling in China during the past 2,000 years. Climatic change was significantly related to the war occurrences and dynastic cycles in historical China.

Article

Aitor Anduaga

A typhoon is a highly organized storm system that develops from initial cyclone eddies and matures by sucking up from the warm tropical oceans large quantities of water vapor that condense at higher altitudes. This latent heat of condensation is the prime source of energy supply that strengthens the typhoon as it progresses across the Pacific Ocean. A typhoon differs from other tropical cyclones only on the basis of location. While hurricanes form in the Atlantic Ocean and eastern North Pacific Ocean, typhoons develop in the western North Pacific around the Philippines, Japan, and China. Because of their violent histories with strong winds and torrential rains and their impact on society, the countries that ring the North Pacific basin—China, Japan, Korea, the Philippines, and Taiwan—all often felt the need for producing typhoon forecasts and establishing storm warning services. Typhoon accounts in the pre-instrumental era were normally limited to descriptions of damage and incidences, and subsequent studies were hampered by the impossibility of solving the equations governing the weather, as they are distinctly nonlinear. The world’s first typhoon forecast was made in 1879 by Fr. Federico Faura, who was a Jesuit scientist from the Manila Observatory. His brethren from the Zikawei Jesuit Observatory, Fr. Marc Dechevrens, first reconstructed the trajectory of a typhoon in 1879, a study that marked the beginning of an era. The Jesuits and other Europeans like William Doberck studied typhoons as a research topic, and their achievements are regarded as products of colonial meteorology. Between the First and Second World Wars, there were important contributions to typhoon science by meteorologists in the Philippines (Ch. Deppermann, M. Selga, and J. Coronas), China (E. Gherzi), and Japan (T. Okada, and Y. Horiguti). The polar front theory developed by the Bergen School in Norway played an important role in creating the large-scale setting for tropical cyclones. Deppermann became the greatest exponent of the polar front theory and air-masses analysis in the Far East and Southeast Asia. From the end of WWII, it became evident that more effective typhoon forecasts were needed to meet military demands. In Hawaii, a joint Navy and Air Force center for typhoon analysis and forecasting was established in 1959—the Joint Typhoon Warning Center (JTWC). Its goals were to publish annual typhoon summaries and conduct research into tropical cyclone forecasting and detection. Other centers had previously specialized in issuing typhoon warnings and analysis. Thus, research and operational forecasting went hand in hand not only in the American JTWC but also in China (the Hong Kong Observatory, the Macao Meteorological and Geophysical Bureau), Japan (the Regional Specialized Meteorological Center), and the Philippines (Atmospheric, Geophysical and Astronomical Service Administration [PAGASA]). These efforts produced more precise scientific knowledge about the formation, structure, and movement of typhoons. In the 1970s and the 1980s, three new tools for research—three-dimensional numerical cloud models, Doppler radar, and geosynchronous satellite imagery—provided a new observational and dynamical perspective on tropical cyclones. The development of modern computing systems has offered the possibility of making numerical weather forecast models and simulations of tropical cyclones. However, typhoons are not mechanical artifacts, and forecasting their track and intensity remains an uncertain science.