1-5 of 5 Results

  • Keywords: weather extremes x
Clear all

Article

Jürgen Scheffran, Peter Michael Link, and Janpeter Schilling

Climate change was conceived as a “risk multiplier” that could exacerbate security risks and conflicts in fragile regions and hotspots where poverty, violence, injustice, and social insecurity are prevalent. The linkages have been most extensively studied for the African continent, which is affected by both climate change and violent conflict. Together with other drivers, climate change can undermine human security and livelihoods of vulnerable communities in Africa through different pathways. These include variability in temperature and precipitation; weather extremes and natural disasters, such as floods and droughts; resource problems through water scarcity, land degradation, and food insecurity; forced migration and farmer–herder conflict; and infrastructure for transport, water, and energy supply. Through these channels, climate change may contribute to humanitarian crises and conflict, subject to local conditions for the different regions of Africa. While a number of statistical studies find no significant link between reduced precipitation and violent conflict in Africa, several studies do detect such a link, mostly in interaction with other issues. The effects of climate change on resource conflicts are often indirect, complex, and linked to political, economic, and social conflict factors, including social inequalities, low economic development, and ineffective institutions. Regions dependent on rainfed agriculture are more sensitive to civil conflict following droughts. Rising food prices can contribute to food insecurity and violence. Water scarcity and competition in river basins are partly associated with low-level conflicts, depending on socioeconomic variables and management practices. Another conflict factor in sub-Saharan Africa are shifting migration routes of herders who need grazing land to avoid livestock losses, while farmers depend on land for growing their harvest. Empirical findings reach no consensus on how climate vulnerability and violence interact with environmental migration, which also could be seen as an adaptation measure strengthening community resilience. Countries with a low human development index (HDI) are particularly vulnerable to the double exposure to natural disasters and armed conflict. Road and water infrastructures influence the social and political consequences of climate stress. The high vulnerabilities and low adaptive capacities of many African countries may increase the probability of violent conflicts related to climate change impacts.

Article

Mehmet Ali Uzelgun and Ümit Şahin

The case of Turkey provides some insight into the socio-political and communicative processes taking place at the periphery of global climate governance efforts. Turkey’s 12-year delayed entry into the United Nations Framework Convention on Climate Change regime (in 2004) and its being one of the last signatories to the Kyoto Protocol (in 2009) has hampered climate-relevant efforts in the country in many ways. This includes institutionalization at national and local levels, the development of relevant national policies, and communication activities. Climate change communication activities in Turkey can be divided into two major categories: the earlier advocacy activities, and the period of mass communication. The earlier activist or advocacy group communication efforts began around 2000, and have contributed significantly to mainstreaming climate change. Paralleling the government’s position towards the issue in many ways, the national-level media activities have remained nominal until 2007, when escalating local weather extremes were widely associated with climate change. Research in climate change communication in Turkey commenced only recently. Although the studies are limited both in scope and quantity, existing evidence suggests that 2007 was crucial in setting the terms of the debate in the country. Mobilizations at both international and national levels in 2009 made that year another landmark for climate change communication and policy in Turkey. International organizations and governance agencies have also taken active roles in both communication and research activities, and in the translation of governance tools developed at the international level to the national level. A review of the above-mentioned efforts suggests that a bottom-up direction of climate change communication efforts, and a minority-influence framework—in which minor advocacy and expert groups are supported by global policy norms and scientific knowledge in taking the issue to the national agenda—may be useful in understanding the dynamics taking place in industrializing countries such as Turkey.

Article

The emergence of meteorology in Vietnam did not begin in 1898–1899, with the French installation of a central meteorological observatory in Phù Liễn, near Hải Phòng, and a network of meteorological stations across Indochina. Prior to the colonial time, the ethnic Vietnamese, as well as other ethnic groups such as the Cham, Muong, and Tay-Thai, developed their own knowledge of meteorological phenomena that functioned within their farming practices and cultural frameworks. While further research concerning traditional meteorological knowledge of minority groups in Vietnam is needed, substantial evidence allows a preliminary survey on the practices of the ethnic Vietnamese. Between 1000 and the 1850s, the Vietnamese expanded outwards from their original homeland in the lowlands of north and north-central Vietnam. They adopted the written language, thought systems, and technologies of imperial China, which predisposed them to an enduring Chinese-style meteorological ideology. The Vietnamese viewed weather extremes and other natural anomalies not merely as natural processes. Because meteorological phenomena were “Heaven-sent” warnings of cosmological disasters, Vietnamese dynastic rulers, as well as local farmers and rice producers, interpreted these signs as a demand for moral change. Redressing the authorities’ governance, according to their view, helped rehabilitate the equilibrium of the cosmos. Hence, the records of weather events in Vietnamese historical documents do not simply describe the conditions of past weather, but more importantly, the situations in which the cosmos was no longer in balance. One need not assume that premodern meteorology lacked material grounds. In Vietnam, meteorological knowledge and practices were strongly associated with wet rice cultivation. Vietnamese authorities maintained official agencies to produce yearly calendars that traced proper timing for rice crops, while the populace accumulated experience-based knowledge about seasonal rainfall. Intellectuals, too, expanded their interests to include meteorological knowledge because the subject enriched their philosophy of nature, as in the case of Confucian thinker Lê Quý Đôn (1726–1784), or their medical practices, as in the case of physician Lê Hữu Trác (1720–1791). The advances of Southeast Asian paleoclimate reconstruction since the beginning of the 21st century have added new ideas and methodologies to the study of premodern meteorology in Vietnam. A stronger partnership between climate scientists and historians will therefore facilitate more sophisticated investigations into the knowledge and practices that the Vietnamese developed to respond to weather and climate dynamics.

Article

Nathalie de Noblet-Ducoudré and Andrew J. Pitman

The land surface is where humans live and where they source their water and food. The land surface plays an important role in climate and anthropogenic climate change both as a driver of change and as a system that responds to change. Soils and vegetation influence the exchanges of water, energy and carbon between the land and the overlying atmosphere and thus contribute to the variability and the evolution of climate. But the role of the land in climate is scale dependent which means different processes matter on different timescales and over different spatial scales. Climate change alters the functioning of the land with changes in the seasonal cycle of ecosystem growth, in the extent of forests, the melt of permafrost, the magnitude and frequency of disturbances such as fire, drought, … Those changes feedback into climate at both the global and the regional scales. In addition, humans perturb the land conditions via deforestation, irrigation, urbanization, … and this directly affects climatic conditions at the local to regional scales with also sometimes global consequences via the release of greenhouse gases. Not accounting for land surface processes in climate modelling, whatever the spatial scale, will result in biases in the climate simulations.

Article

Situated at the southern edge of the Tibetan Plateau (TP), the Hindu-Kush-Himalayas-Gangetic (HKHG) region is under the clear and present danger of climate change. Flash-flood, landslide, and debris flow caused by extreme precipitation, as well as rapidly melting glaciers, threaten the water resources and livelihood of more than 1.2 billion people living in the region. Rapid industrialization and increased populations in recent decades have resulted in severe atmospheric and environmental pollution in the region. Because of its unique topography and dense population, the HKHG is not only a major source of pollution aerosol emissions, but also a major receptor of large quantities of natural dust aerosols transported from the deserts of West Asia and the Middle East during the premonsoon and early monsoon season (April–June). The dust aerosols, combined with local emissions of light-absorbing aerosols, that is, black carbon (BC), organic carbon (OC), and mineral dust, can (a) provide additional powerful heating to the atmosphere and (b) allow more sunlight to penetrate the snow layer by darkening the snow surface. Both effects will lead to accelerated melting of snowpack and glaciers in the HKHG region, amplifying the greenhouse warming effect. In addition, these light-absorbing aerosols can interact with monsoon winds and precipitation, affecting extreme precipitation events in the HKHG, as well as weather variability and climate change over the TP and the greater Asian monsoon region.