1-2 of 2 Results  for:

  • Keywords: Holocene x
  • Climate of Africa x
Clear all


Climatic Changes and Cultural Responses During the African Humid Period Recorded in Multi-Proxy Data  

David McGee and Peter B. deMenocal

The expansion and intensification of summer monsoon precipitation in North and East Africa during the African Humid Period (AHP; c. 15,000–5,000 years before present) is recorded by a wide range of natural archives, including lake and marine sediments, animal and plant remains, and human archaeological remnants. Collectively this diverse proxy evidence provides a detailed portrait of environmental changes during the AHP, illuminating the mechanisms, temporal and spatial evolution, and cultural impacts of this remarkable period of monsoon expansion across the vast expanse of North and East Africa. The AHP corresponds to a period of high local summer insolation due to orbital precession that peaked at ~11–10 ka, and it is the most recent of many such precessionally paced pluvial periods over the last several million years. Low-latitude sites in the North African tropics and Sahel record an intensification of summer monsoon precipitation at ~15 ka, associated with both rising summer insolation and an abrupt warming of the high northern latitudes at this time. Following a weakening of monsoon strength during the Younger Dryas cold period (12.9–11.7 ka), proxy data point to peak intensification of the West African monsoon between 10–8 ka. These data document lake and wetland expansions throughout almost all of North Africa, expansion of grasslands, shrubs and even some tropical trees throughout much of the Sahara, increases in Nile and Niger River runoff, and proliferation of human settlements across the modern Sahara. The AHP was also marked by a pronounced reduction in windblown mineral dust emissions from the Sahara. Proxy data suggest a time-transgressive end of the AHP, as sites in the northern and eastern Sahara become arid after 8–7 ka, while sites closer to the equator became arid later, between 5–3 ka. Locally abrupt drops in precipitation or monsoon strength appear to have been superimposed on this gradual, insolation-paced decline, with several sites to the north and east of the modern arid/semi-arid boundary showing evidence of century-scale shifts to drier conditions around 5 ka. This abrupt drying appears synchronous with rapid depopulation of the North African interior and an increase in settlement along the Nile River, suggesting a relationship between the end of the AHP and the establishment of proto-pharaonic culture. Proxy data from the AHP provide an important testing ground for model simulations of mid-Holocene climate. Comparisons with proxy-based precipitation estimates have long indicated that mid-Holocene simulations by general circulation models substantially underestimate the documented expansion of the West African monsoon during the AHP. Proxy data point to potential feedbacks that may have played key roles in amplifying monsoon expansion during the AHP, including changes in vegetation cover, lake surface area, and mineral dust loading. This article also highlights key areas for future research. Among these are the role of land surface and mineral aerosol changes in amplifying West African monsoon variability; the nature and drivers of monsoon variability during the AHP; the response of human populations to the end of the AHP; and understanding locally abrupt drying at the end of the AHP.


The Late Pleistocene-Holocene African Humid Period as Evident in Lakes  

Jonathan Holmes and Philipp Hoelzmann

From the end of the last glacial stage until the mid-Holocene, large areas of arid and semi-arid North Africa were much wetter than present, during the interval that is known as the African Humid Period (AHP). During this time, large areas were characterized by a marked increase in precipitation, an expansion of lakes, river systems, and wetlands, and the spread of grassland, shrub land, and woodland vegetation into areas that are currently much drier. Simulations with climate models indicate that the AHP was the result of orbitally forced increase in northern hemisphere summer insolation, which caused the intensification and northward expansion of the boreal summer monsoon. However, feedbacks from ocean circulation, land-surface cover, and greenhouse gases were probably also important. Lake basins and their sediment archives have provided important information about climate during the AHP, including the overall increases in precipitation and in rates, trajectories, and spatial variations in change at the beginning and the end of the interval. The general pattern is one of apparently synchronous onset of the AHP at the start of the Bølling-Allerød interstadial around 14,700 years ago, although wet conditions were interrupted by aridity during the Younger Dryas stadial. Wetter conditions returned at the start of the Holocene around 11,700 years ago covering much of North Africa and extended into parts of the southern hemisphere, including southeastern Equatorial Africa. During this time, the expansion of lakes and of grassland or shrub land vegetation over the area that is now the Sahara desert, was especially marked. Increasing aridity through the mid-Holocene, associated with a reduction in northern hemisphere summer insolation, brought about the end of the AHP by around 5000–4000 years before present. The degree to which this end was abrupt or gradual and geographically synchronous or time transgressive, remains open to debate. Taken as a whole, the lake sediment records do not support rapid and synchronous declines in precipitation and vegetation across the whole of North Africa, as some model experiments and other palaeoclimate archives have suggested. Lake sediments from basins that desiccated during the mid-Holocene may have been deflated, thus providing a misleading picture of rapid change. Moreover, different proxies of climate or environment may respond in contrasting ways to the same changes in climate. Despite this, there is evidence of rapid (within a few hundred years) termination to the AHP in some regions, with clear signs of a time-transgressive response both north to south and east to west, pointing to complex controls over the mid-Holocene drying of North Africa.