1-4 of 4 Results  for:

  • Keywords: precipitation x
  • Climate of Africa x
Clear all

Article

Water, not temperature, governs life in West Africa, and the region is both temporally and spatially greatly affected by rainfall variability. Recent rainfall anomalies, for example, have greatly reduced crop productivity in the Sahel area. Rainfall indices from recent centuries show that multidecadal droughts reoccur and, furthermore, that interannual rainfall variations are high in West Africa. Current knowledge of historical rainfall patterns is, however, fairly limited. A detailed rainfall chronology of West Africa is currently only available from the beginning of the 19th century. For the 18th century and earlier, the records are still sporadic, and an interannual rainfall chronology has so far only been obtained for parts of the Guinea Coast. Thus, there is a need to extend the rainfall record to fully understand past precipitation changes in West Africa. The main challenge when investigating historical rainfall variability in West Africa is the scarcity of detailed and continuous data. Readily available meteorological data barely covers the last century, whereas in Europe and the United States for example, the data sometimes extend back two or more centuries. Data availability strongly correlates with the historical development of West Africa. The strong oral traditions that prevailed in the pre-literate societies meant that only some of the region’s history was recorded in writing before the arrival of the Europeans in the 16th century. From the 19th century onwards, there are, therefore, three types of documents available, and they are closely linked to the colonization of West Africa. These are: official records started by the colonial governments continuing to modern day; regular reporting stations started by the colonial powers; and finally, temporary nongovernmental observations of various kinds. For earlier periods, the researcher depends on noninstrumental observations found in letters, reports, or travel journals made by European slave traders, adventurers, and explorers. Spatially, these documents are confined to the coastal areas, as Europeans seldom ventured inland before the mid-1800s. Thus, the inland regions are generally poorly represented. Arabic chronicles from the Sahel provide the only source of information, but as historical documents, they include several spatiotemporal uncertainties. Climate researchers often complement historical data with proxy-data from nature’s own archives. However, the West African environment is restrictive. Reliable proxy-data, such as tree-rings, cannot be exploited effectively. Tropical trees have different growth patterns than trees in temperate regions and do not generate growth rings in the same manner. Sediment cores from Lake Bosumtwi in Ghana have provided, so far, the best centennial overview when it comes to understanding precipitation patterns during recent centuries. These reveal that there have been considerable changes in historical rainfall patterns—West Africa may have been even drier than it is today.

Article

The expansion and intensification of summer monsoon precipitation in North and East Africa during the African Humid Period (AHP; c. 15,000–5,000 years before present) is recorded by a wide range of natural archives, including lake and marine sediments, animal and plant remains, and human archaeological remnants. Collectively this diverse proxy evidence provides a detailed portrait of environmental changes during the AHP, illuminating the mechanisms, temporal and spatial evolution, and cultural impacts of this remarkable period of monsoon expansion across the vast expanse of North and East Africa. The AHP corresponds to a period of high local summer insolation due to orbital precession that peaked at ~11–10 ka, and it is the most recent of many such precessionally paced pluvial periods over the last several million years. Low-latitude sites in the North African tropics and Sahel record an intensification of summer monsoon precipitation at ~15 ka, associated with both rising summer insolation and an abrupt warming of the high northern latitudes at this time. Following a weakening of monsoon strength during the Younger Dryas cold period (12.9–11.7 ka), proxy data point to peak intensification of the West African monsoon between 10–8 ka. These data document lake and wetland expansions throughout almost all of North Africa, expansion of grasslands, shrubs and even some tropical trees throughout much of the Sahara, increases in Nile and Niger River runoff, and proliferation of human settlements across the modern Sahara. The AHP was also marked by a pronounced reduction in windblown mineral dust emissions from the Sahara. Proxy data suggest a time-transgressive end of the AHP, as sites in the northern and eastern Sahara become arid after 8–7 ka, while sites closer to the equator became arid later, between 5–3 ka. Locally abrupt drops in precipitation or monsoon strength appear to have been superimposed on this gradual, insolation-paced decline, with several sites to the north and east of the modern arid/semi-arid boundary showing evidence of century-scale shifts to drier conditions around 5 ka. This abrupt drying appears synchronous with rapid depopulation of the North African interior and an increase in settlement along the Nile River, suggesting a relationship between the end of the AHP and the establishment of proto-pharaonic culture. Proxy data from the AHP provide an important testing ground for model simulations of mid-Holocene climate. Comparisons with proxy-based precipitation estimates have long indicated that mid-Holocene simulations by general circulation models substantially underestimate the documented expansion of the West African monsoon during the AHP. Proxy data point to potential feedbacks that may have played key roles in amplifying monsoon expansion during the AHP, including changes in vegetation cover, lake surface area, and mineral dust loading. This article also highlights key areas for future research. Among these are the role of land surface and mineral aerosol changes in amplifying West African monsoon variability; the nature and drivers of monsoon variability during the AHP; the response of human populations to the end of the AHP; and understanding locally abrupt drying at the end of the AHP.

Article

Precipitation levels in southern Africa exhibit a marked east–west gradient and are characterized by strong seasonality and high interannual variability. Much of the mainland south of 15°S exhibits a semiarid to dry subhumid climate. More than 66 percent of rainfall in the extreme southwest of the subcontinent occurs between April and September. Rainfall in this region—termed the winter rainfall zone (WRZ)—is most commonly associated with the passage of midlatitude frontal systems embedded in the austral westerlies. In contrast, more than 66 percent of mean annual precipitation over much of the remainder of the subcontinent falls between October and March. Climates in this summer rainfall zone (SRZ) are dictated by the seasonal interplay between subtropical high-pressure systems and the migration of easterly flows associated with the Intertropical Convergence Zone. Fluctuations in both SRZ and WRZ rainfall are linked to the variability of sea-surface temperatures in the oceans surrounding southern Africa and are modulated by the interplay of large-scale modes of climate variability, including the El Niño-Southern Oscillation (ENSO), Southern Indian Ocean Dipole, and Southern Annular Mode. Ideas about long-term rainfall variability in southern Africa have shifted over time. During the early to mid-19th century, the prevailing narrative was that the climate was progressively desiccating. By the late 19th to early 20th century, when gauged precipitation data became more readily available, debate shifted toward the identification of cyclical rainfall variation. The integration of gauge data, evidence from historical documents, and information from natural proxies such as tree rings during the late 20th and early 21st centuries, has allowed the nature of precipitation variability since ~1800 to be more fully explored. Drought episodes affecting large areas of the SRZ occurred during the first decade of the 19th century, in the early and late 1820s, late 1850s–mid-1860s, mid-late 1870s, earlymid-1880s, and mid-late 1890s. Of these episodes, the drought during the early 1860s was the most severe of the 19th century, with those of the 1820s and 1890s the most protracted. Many of these droughts correspond with more extreme ENSO warm phases. Widespread wetter conditions are less easily identified. The year 1816 appears to have been relatively wet across the Kalahari and other areas of south central Africa. Other wetter episodes were centered on the late 1830s–early 1840s, 1855, 1870, and 1890. In the WRZ, drier conditions occurred during the first decade of the 19th century, for much of the mid-late 1830s through to the mid-1840s, during the late 1850s and early 1860s, and in the early-mid-1880s and mid-late 1890s. As for the SRZ, markedly wetter years are less easily identified, although the periods around 1815, the early 1830s, mid-1840s, mid-late 1870s, and early 1890s saw enhanced rainfall. Reconstructed rainfall anomalies for the SRZ suggest that, on average, the region was significantly wetter during the 19th century than the 20th and that there appears to have been a drying trend during the 20th century that has continued into the early 21st. In the WRZ, average annual rainfall levels appear to have been relatively consistent between the 19th and 20th centuries, although rainfall variability increased during the 20th century compared to the 19th.

Article

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century. The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems. The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening. Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.