1-2 of 2 Results  for:

  • Hydrological Cycle x
Clear all


A. Johannes Dolman, Luis U. Vilasa-Abad, and Thomas A. J. Janssen

Drylands cover around 40% of the land surface on Earth and are inhabited by more than 2 billion people, who are directly dependent on these lands. Drylands are characterized by a highly variable rainfall regime and inherent vegetation-climate feedbacks that can enhance the resilience of the system, but also can amplify disturbances. In that way, the system may get locked into two alternate stable states: one relatively wet and vegetated, and the other dry and barren. The resilience of dryland ecosystems derives from a number of adaptive mechanisms by which the vegetation copes with prolonged water stress, such as hydraulic redistribution. The stochastic nature of both the vegetation dynamics and the rainfall regime is a key characteristic of these systems and affects its management in relation to the feedbacks. How the ecohydrology of the African drylands will change in the future depends on further changes in climate, human disturbances, land use, and the socioeconomic system.


Elevation-dependent climate change has been observed in the European Alps in the context of global warming and as a consequence of Alpine orography. It is most obvious in elevation-dependent warming, conveniently defined as the linear regression of the time series of temperatures against elevation, and it reaches values of several tenths of a degree per 1,000 m elevation per decade. Observed changes in temperature have forced changes in atmospheric pressure, water vapor, cloud condensation, fluxes of infrared and solar radiation, snow cover, and evaporation, which have affected the Alpine surface energy and water balance in different ways at different elevations. At the same time, changes in atmospheric aerosol optical depth, in atmospheric circulation, and in the frequency of weather types have contributed to the observed elevation-dependent climate change in the European Alps. To a large extent, these observations have been reproduced by model simulations.