Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, CLIMATE SCIENCE ( (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 29 September 2020

Summary and Keywords

Polar lows are intense maritime mesoscale cyclones developing in both hemispheres poleward of the main polar front. These rapidly developing severe storms are accompanied by strong winds, heavy precipitation (hail and snow), and rough sea states. Polar lows can have significant socio-economic impact by disrupting human activities in the maritime polar regions, such as tourism, fisheries, transportation, research activities, and exploration of natural resources. Upon landfall, they quickly decay, but their blustery winds and substantial snowfall affect the local communities in coastal regions, resulting in airport-closure, transportation breakdown and increased avalanche risk.

Polar lows are primarily a winter phenomenon and tend to develop during excursions of polar air masses, originating from ice-covered areas, over the adjacent open ocean. These so-called cold-air outbreaks are driven by the synoptic scale atmospheric configuration, and polar lows usually develop along air-mass boundaries associated with these cold-air outbreaks. Local orographic features and the sea-ice configuration also play prominent roles in pre-conditioning the environment for polar low development. Proposed dynamical pathways for polar low development include moist baroclinic instability, symmetric convective instability, and frontal instability, but verification of these mechanisms is limited due to sparse observations and insufficient resolution of reanalysis data.

Maritime areas with a frequent polar low presence are climatologically important regions for the global ocean circulation, hence local changes in energy exchange between the atmosphere and ocean in these regions potentially impacts the global climate system. Recent research indicates that the enhanced heat and momentum exchange by mesoscale cyclones likely has a pronounced impact on ocean heat transport by triggering deep water formation in the ocean and by modifying horizontal mixing in the atmosphere. Since the beginning of the satellite-era a steady decline of sea-ice cover in the Northern Hemisphere has expanded the ice-free polar regions, and thus the areas for polar low development, yet the number of polar lows is projected to decline under future climate scenarios.

Keywords: polar low, mesoscale cyclone, severe weather, high-latitude, cold-air outbreak

Access to the complete content on Oxford Research Encyclopedia of Climate Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.