1-3 of 3 Results  for:

  • Keywords: science communication x
  • Communication and Technology x
Clear all


Scientific Uncertainty in Health and Risk Messaging  

Stephen Zehr

Expressions of scientific uncertainty are normal features of scientific articles and professional presentations. Journal articles typically include research questions at the beginning, probabilistic accounts of findings in the middle, and new research questions at the end. These uncertainty claims are used to construct clear boundaries between uncertain and certain scientific knowledge. Interesting questions emerge, however, when scientific uncertainty is communicated in occasions for public science (e.g., newspaper accounts of science, scientific expertise in political deliberations, science in stakeholder claims directed to the public, and so forth). Scientific uncertainty is especially important in the communication of environmental and health risks where public action is expected despite uncertain knowledge. Public science contexts are made more complex by the presence of multiple actors such as citizen-scientists, journalists, stakeholders, social movement actors, politicians, and so on who perform important functions in the communication and interpretation of scientific information and bring in diverse norms and values. A past assumption among researchers was that scientists would deemphasize or ignore uncertainties in these situations to better match their claims with a public perception of science as an objective, truth-building institution. However, more recent research indicates variability in the likelihood that scientists communicate uncertainties and in the public reception and use of uncertainty claims. Many scientists still believe that scientific uncertainty will be misunderstood by the public and misused by interest groups involved with an issue, while others recognize a need to clearly translate what is known and not known. Much social science analysis of scientific uncertainty in public science views it as a socially constructed phenomenon, where it depends less upon a particular state of scientific research (what scientists are certain and uncertain of) and more upon contextual factors, the actors involved, and the meanings attached to scientific claims. Scientific uncertainty is often emergent in public science, both in the sense that the boundary between what is certain and uncertain can be managed and manipulated by powerful actors and in the sense that as scientific knowledge confronts diverse public norms, values, local knowledges, and interests new areas of uncertainty emerge. Scientific uncertainty may emerge as a consequence of social conflict rather than being its cause. In public science scientific uncertainty can be interpreted as a normal state of affairs and, in the long run, may not be that detrimental to solving societal problems if it opens up new avenues and pathways for thinking about solutions. Of course, the presence of scientific uncertainty can also be used to legitimate inaction.


Science and Communication  

Celeste M. Condit and L. Bruce Railsback

Whether understood as a set of procedures, statements, or institutions, the scope and character of science has changed through time and area of investigation. The prominent current definition of science as systematic efforts to understand the world on the basis of empirical evidence entails several characteristics, each of which has been deeply investigated by multidisciplinary scholars in science studies. The aptness of these characteristics as defining elements of science has been examined both in terms of their sufficiency as normative ideals and with regard to their fit as empirical descriptors of the actual practices of science. These putative characteristics include a set of commitments to (1) the goal of developing maximally general, empirically based explanations certified through falsification procedures, predictive power, and/or fruitfulness and application, (2) meta-methodologies of hypothesis testing and quantification, and (3) relational norms including communalism, universalism, disinterestedness, organized skepticism, and originality. The scope of scientific practice has been most frequently identified with experimentation, observation, and modeling. However, data mining has recently been added to the scientific repertoire, and genres of communication and argumentation have always been an unrecognized but necessary component of scientific practices. The institutional home of science has also changed through time. The dominant model of the past three centuries has housed science predominantly in universities. However, science is arguably moving toward a “post-academic” era.


The Politics of Scientific Knowledge  

Elizabeth Suhay

This article discusses the various ways in which political concerns among government officials, scientists, journalists, and the public influence the production, communication, and reception of scientific knowledge. In so doing, the article covers a wide variety of topics, mainly with a focus on the U.S. context. The article begins by defining key terms under discussion and explaining why science is so susceptible to political influence. The article then proceeds to discuss: the government’s current and historical role as a funder, manager, and consumer of scientific knowledge; how the personal interests and ideologies of scientists can influence their research; the susceptibility of scientific communication to politicization and the concomitant political impact on audiences; the role of the public’s political values, identities, and interests in their understanding of science; and, finally, the role of the public, mainly through interest groups and think tanks, in shaping the production and public discussion of scientific knowledge. While the article’s primary goal is to provide an empirical description of these influences, a secondary, normative, goal is to clarify when political values and interests are or are not appropriate influences on the creation and dissemination of scientific knowledge in a democratic context.