Mixed Frequency Models
- Eric GhyselsEric GhyselsDepartment of Economics, University of North Carolina Chapel Hill & Department of Finance, Kenan-Flagler Business School and CEPR
Summary
The majority of econometric models ignore the fact that many economic time series are sampled at different frequencies. A burgeoning literature pertains to econometric methods explicitly designed to handle data sampled at different frequencies. Broadly speaking these methods fall into two categories: (a) parameter driven, typically involving a state space representation, and (b) data driven, usually based on a mixed-data sampling (MIDAS)-type regression setting or related methods. The realm of applications of the class of mixed frequency models includes nowcasting—which is defined as the prediction of the present—as well as forecasting—typically the very near future—taking advantage of mixed frequency data structures. For multiple horizon forecasting, the topic of MIDAS regressions also relates to research regarding direct versus iterated forecasting.