Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Economics and Finance. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 05 December 2020

Structural Vector Autoregressive Modelslocked

  • Luca GambettiLuca GambettiBarcelona Graduate School of Economics, Autonomous University of Barcelona

Summary

Structural vector autoregressions (SVARs) represent a prominent class of time series models used for macroeconomic analysis. The model consists of a set of multivariate linear autoregressive equations characterizing the joint dynamics of economic variables. The residuals of these equations are combinations of the underlying structural economic shocks, assumed to be orthogonal to each other. Using a minimal set of restrictions, these relations can be estimated—the so-called shock identification—and the variables can be expressed as linear functions of current and past structural shocks. The coefficients of these equations, called impulse response functions, represent the dynamic response of model variables to shocks. Several ways of identifying structural shocks have been proposed in the literature: short-run restrictions, long-run restrictions, and sign restrictions, to mention a few.

SVAR models have been extensively employed to study the transmission mechanisms of macroeconomic shocks and test economic theories. Special attention has been paid to monetary and fiscal policy shocks as well as other nonpolicy shocks like technology and financial shocks.

In recent years, many advances have been made both in terms of theory and empirical strategies. Several works have contributed to extend the standard model in order to incorporate new features like large information sets, nonlinearities, and time-varying coefficients. New strategies to identify structural shocks have been designed, and new methods to do inference have been introduced.

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription