Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Economics and Finance. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 30 November 2022

A Survey of Econometric Approaches to Convergence Tests of Emissions and Measures of Environmental Qualitylocked

A Survey of Econometric Approaches to Convergence Tests of Emissions and Measures of Environmental Qualitylocked

  • Junsoo Lee, Junsoo LeeDepartment of Economics, Finance, and Legal Studies, University of Alabama
  • James E. PayneJames E. PayneCollege of Business Administration, University of Texas at El Paso
  •  and Md. Towhidul IslamMd. Towhidul IslamDepartment of Economics, Finance, and Legal Studies, University of Alabama

Summary

The analysis of convergence behavior with respect to emissions and measures of environmental quality can be categorized into four types of tests: absolute and conditional β-convergence, σ-convergence, club convergence, and stochastic convergence. In the context of emissions, absolute β-convergence occurs when countries with high initial levels of emissions have a lower emission growth rate than countries with low initial levels of emissions. Conditional β-convergence allows for possible differences among countries through the inclusion of exogenous variables to capture country-specific effects. Given that absolute and conditional β-convergence do not account for the dynamics of the growth process, which can potentially lead to dynamic panel data bias, σ-convergence evaluates the dynamics and intradistributional aspects of emissions to determine whether the cross-section variance of emissions decreases over time. The more recent club convergence approach tests the decline in the cross-sectional variation in emissions among countries over time and whether heterogeneous time-varying idiosyncratic components converge over time after controlling for a common growth component in emissions among countries. In essence, the club convergence approach evaluates both conditional σ- and β-convergence within a panel framework. Finally, stochastic convergence examines the time series behavior of a country’s emissions relative to another country or group of countries. Using univariate or panel unit root/stationarity tests, stochastic convergence is present if relative emissions, defined as the log of emissions for a particular country relative to another country or group of countries, is trend-stationary.

The majority of the empirical literature analyzes carbon dioxide emissions and varies in terms of both the convergence tests deployed and the results. While the results supportive of emissions convergence for large global country coverage are limited, empirical studies that focus on country groupings defined by income classification, geographic region, or institutional structure (i.e., EU, OECD, etc.) are more likely to provide support for emissions convergence. The vast majority of studies have relied on tests of stochastic convergence with tests of σ-convergence and the distributional dynamics of emissions less so. With respect to tests of stochastic convergence, an alternative testing procedure accounts for structural breaks and cross-correlations simultaneously is presented. Using data for OECD countries, the results based on the inclusion of both structural breaks and cross-correlations through a factor structure provides less support for stochastic convergence when compared to unit root tests with the inclusion of just structural breaks.

Future studies should increase focus on other air pollutants to include greenhouse gas emissions and their components, not to mention expanding the range of geographical regions analyzed and more robust analysis of the various types of convergence tests to render a more comprehensive view of convergence behavior. The examination of convergence through the use of eco-efficiency indicators that capture both the environmental and economic effects of production may be more fruitful in contributing to the debate on mitigation strategies and allocation mechanisms.

Subjects

  • Econometrics, Experimental and Quantitative Methods
  • Economic Theory and Mathematical Models
  • Environmental, Agricultural, and Natural Resources Economics

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription