121-140 of 310 Results

Article

African financial history is often neglected in research on the history of global financial systems, and in its turn research on African financial systems in the past often fails to explore links with the rest of the world. However, African economies and financial systems have been linked to the rest of the world since ancient times. Sub-Saharan Africa was a key supplier of gold used to underpin the monetary systems of Europe and the North from the medieval period through the 19th century. It was West African gold rather than slaves that first brought Europeans to the Atlantic coast of Africa during the early modern period. Within sub-Saharan Africa, currency and credit systems reflected both internal economic and political structures as well as international links. Before the colonial period, indigenous currencies were often tied to particular trades or trade routes. These systems did not immediately cease to exist with the introduction of territorial currencies by colonial governments. Rather, both systems coexisted, often leading to shocks and localized crises during periods of global financial uncertainty. At independence, African governments had to contend with a legacy of financial underdevelopment left from the colonial period. Their efforts to address this have, however, been shaped by global economic trends. Despite recent expansion and innovation, limited financial development remains a hindrance to economic growth.

Article

Maria Soledad Martinez Peria and Mu Yang Shin

The link between financial inclusion and human development is examined here. Using cross-country data, the behavior of variables that try to capture these concepts is examined and preliminary evidence of a positive association is offered. However, because establishing a causal relationship with macro-data is difficult, a thorough review of the literature on the impact of financial inclusion, focusing on micro-studies that can better address identification is conducted. The literature generally distinguishes between different dimensions of financial inclusion: access to credit, access to bank branches, and access to saving instruments (i.e., accounts). Despite promising results from a first wave of studies, the impact of expanding access to credit seems limited at best, with little evidence of transformative effects on human development outcomes. While there is more promising evidence on the impact of expanding access to bank branches and formal saving instruments, studies show that some interventions such as one-time account opening subsidies are unlikely to have a sizable impact on social and economic outcomes. Instead well-designed interventions catering to individuals’ specific needs in different contexts seem to be required to realize the full potential of formal financial services to enrich human lives.

Article

Financial protection is claimed to be an important objective of health policy. Yet there is a lack of clarity about what it is and no consensus on how to measure it. This impedes the design of efficient and equitable health financing. Arguably, the objective of financial protection is to shield nonmedical consumption from the cost of healthcare. The instruments are formal health insurance and public finances, as well as informal and self-insurance mechanisms that do not impair earnings potential. There are four main approaches to the measurement of financial protection: the extent of consumption smoothing over health shocks, the risk premium (willingness to pay in excess of a fair premium) to cover uninsured medical expenses, catastrophic healthcare payments, and impoverishing healthcare payments. The first of these does not restrict attention to medical expenses, which limits its relevance to health financing policy. The second rests on assumptions about risk preferences. No measure treats medical expenses that are financed through informal insurance and self-insurance instruments in an entirely satisfactory way. By ignoring these sources of imperfect insurance, the catastrophic payments measure overstates the impact of out-of-pocket medical expenses on living standards, while the impoverishment measure does not credibly identify poverty caused by them. It is better thought of as a correction to the measurement of poverty.

Article

Irina Grafova

One of the most fundamental results in health economics is that a greater socio-economic status is associated with better health outcomes. However, the experience of financial pressure and lack of resources transcends the notion of low income and poverty. Families of all income categories can experience financial pressure and lack of resources. This article reviews the literature examining the relationship between financial strain and various health outcomes. There are three main approaches to the measurement of financial strain found in the research literature, each one capturing a slightly different aspect: the family’s debt position, the availability of emergency funds, and inability to meet current financial obligations. There are two main hypotheses explaining how financial strain may affect health. First, financial strain indicates a lower amount of financial resources available to individuals and families. This may have a dual impact on health. On the one hand, lower financial resources may lead to a decrease in consumption of substances such as tobacco that are harmful to health. On the other hand, lower financial resources may also negatively affect healthcare access, healthcare utilization, and adherence to treatment, with each contributing to a decline in health. Second, financial strain may produce greater uncertainty with regard to the availability of financial resources at present as well as in the future, thereby resulting in elevated stress, which may, in turn, result in poorer health outcomes. Examining the relationship between financial strain and health is complicated because it appears to be bidirectional. It is not only the case that financial strain may impact health but that health may impact financial strain. The research literature consistently finds that financial strain has a detrimental impact on a variety of mental health outcomes. This relationship has been documented for a variety of financial strain indicators, including non-collateralized (unsecure) debt, mortgage debt, and the inability to meet current financial obligations. The research on the association between financial strain and health behavior outcomes is more ambiguous. As one example, there are mixed results concerning whether financial strain results in a higher likelihood of obesity. This research has considered various indicators of financial strain, including credit card debt and the inability to meet current financial obligations. It appears that both among adults and children there is no consistent evidence on the impact of financial strain on body weight. Similarly, the results on the impact of financial strain on alcohol use and substance abuse are mixed. A number of significant questions regarding the relationship between financial strain and health remain unresolved. The majority of the existing studies focus on health outcomes among adults. There is a lack of understanding regarding how family exposure to financial strain can affect children. Additionally, very little is known about the implications of long-term exposure to financial strain. There are also some very important methodological challenges in this area of research related to establishing causality. Establishing causality and learning more about the implications of the exposure to financial strain could have important policy implications for a variety of safety net programs.

Article

Alexandrina Stoyanova and David Cantarero-Prieto

Long-term care (LTC) systems entitle frail and disabled people, who experience declines in physical and mental capacities, to quality care and support from an appropriately trained workforce and aim to preserve individual health and promote personal well-being for people of all ages. Myriad social factors pose significant challenges to LTC services and systems worldwide. Leading among these factors is the aging population—that is, the growing proportion of older people, the main recipients of LTC, in the population—and the implications not only for the health and social protection sectors, but almost all other segments of society. The number of elderly citizens has increased significantly in recent years in most countries and regions, and the pace of that growth is expected to accelerate in the forthcoming decades. The rapid demographic evolution has been accompanied by substantial social changes that have modified the traditional pattern of delivery LTC. Although families (and friends) still provide most of the help and care to relatives with functional limitations, changes in the population structure, such as weakened family ties, increased participation of women in the labor market, and withdrawal of early retirement policies, have resulted in a decrease in the provision of informal care. Thus, the growing demands for care, together with a lower potential supply of informal care, is likely to put pressure on the provision of formal care services in terms of both quantity and quality. Other related concerns include the sustainable financing of LTC services, which has declined significantly in recent years, and the pursuit of equity. The current institutional background regarding LTC differs substantially across countries, but they all face similar challenges. Addressing these challenges requires a comprehensive approach that allows for the adoption of the “right” mix of policies between those aiming at informal care and those focusing on the provision and financing of formal LTC services.

Article

Bruce Chapman and Lorraine Dearden

The rapid worldwide growth in higher education undergraduate enrollments since around 1990 has meant that governments have had to rethink provision and funding arrangements to help ensure both cost-effective and equitable outcomes. It is important to understand in detail the fundamental financial conceptual building blocks that are necessary for an efficacious and socially just higher education financing system. In response to the critical question of who should pay for higher education and student income support, the case for the sharing of the costs between students, graduates, and taxpayers is overwhelming from the perspectives of both efficiency and equity. Further, there is a consensus that governments should intervene with respect to the underwriting of student loans, but there are very important and quite different implications for borrowers with respect to loan collection arrangements. The most equitable and effective higher education financing instrument involves loans that are repaid only when and if debtors can afford to do so, known as income-contingent loans. The less desirable form of student loans, defined by time-based collection, is internationally still the most common approach, but recent advances in economic theory and econometric methodology provide both conceptual bases and exciting and innovative ways for governments to understand why traditional student loan approaches are inferior to income-contingent collection. When the effects of student loans on access and welfare become more properly understood, the case for targeted assistance for all disadvantaged prospective students for reasons of social justice remains compelling. The importance of the attainment of the right financing system was highlighted by the economic trauma associated with the COVID-19 pandemic, an ordeal that caused many universities to experience an entirely unexpected financial crisis and led millions of students to struggle with unanticipated loan repayment difficulties.

Article

The development of a simple framework with optimizing agents and nominal rigidities is the point of departure for the analysis of three questions about fiscal and monetary policies in an open economy. The first question concerns the optimal monetary policy targets in a world with trade and financial links. In the baseline model, the optimal cooperative monetary policy is fully inward-looking and seeks to stabilize a combination of domestic inflation and output gap. The equivalence with the closed economy case, however, ends if countries do not cooperate, if firms price goods in the currency of the market of destination, and if international financial markets are incomplete. In these cases, external variables that capture international misalignments relative to the first best become relevant policy targets. The second question is about the empirical evidence on the international transmission of government spending shocks. In response to a positive innovation, the real exchange rate depreciates and the trade balance deteriorates. Standard open economy models struggle to match this evidence. Non-standard consumption preferences and a detailed fiscal adjustment process constitute two ways to address the puzzle. The third question deals with the trade-offs associated with an active use of fiscal policy for stabilization purposes in a currency union. The optimal policy assignment mandates the monetary authority to stabilize union-wide aggregates and the national fiscal authorities to respond to country-specific shocks. Permanent changes of government debt allow to smooth the distortionary effects of volatile taxes. Clear and credible fiscal rules may be able to strike the appropriate balance between stabilization objectives and moral hazard issues.

Article

Foreign direct investment (FDI) plays an important role in facilitating the process of international technology diffusion. While FDI among industrialized countries primarily occurs via international mergers and acquisitions (M&As), investment headed to developing countries is more likely to be greenfield in nature; that is, it involves the establishment or expansion of new foreign affiliates by multinational firms. M&As have the potential to yield productivity improvements via changes in management and organization structure of target firms, whereas greenfield FDI leads to transfer of novel technical know-how by initiating the production of new products in host countries as well as by introducing improvements in existing production processes. Given the prominent role that multinational firms play in global research and development (R&D), there is much interest in whether and how technologies transferred by them to their foreign subsidiaries later diffuse more broadly in host economies, thereby potentially generating broad-based productivity gains. Empirical evidence shows that whereas spillovers from FDI to competing local firms are elusive, such is not the case for spillovers to local suppliers and other agents involved in vertical relationships with multinationals. Multinationals have substantially increased their investments in research facilities in various parts of the world and in R&D collaboration with local firms in developing countries, most notably China and India. Such international collaboration in R&D spearheaded by multinational firms has the potential to accelerate global productivity growth.

Article

Marissa Collins, Neil McHugh, Rachel Baker, Alec Morton, Lucy Frith, Keith Syrett, and Cam Donaldson

Health and social care organizations work within the context of limited resources. Different techniques to aid resource allocation and decision-making exist and are important as scarcity of resources in health and social care is inescapable. Healthcare systems, regardless of how they are organized, must decide what services to provide given the resources available. This is particularly clear in systems funded by taxation, which have limited budgets and other limited resources (staff, skills, facilities, etc.) and in which the claims on these resources outstrip supply. Healthcare spending in many countries is not expected to increase over the short or medium term. Therefore, frameworks to set priorities are increasingly required. Four disciplines provide perspectives on priority setting: economics, decision analysis, ethics, and law. Although there is overlap amongst these perspectives, they are underpinned by different principles and processes for priority setting. As the values and viewpoints of those involved in priority setting in health and social care will differ, it is important to consider how these could be included to inform a priority setting process. It is proposed that these perspectives and the consideration of values and viewpoints could be brought together in a combined priority setting framework for use within local health and social care organizations.

Article

High-Dimensional Dynamic Factor Models have their origin in macroeconomics, precisely in empirical research on Business Cycles. The central idea, going back to the work of Burns and Mitchell in the years 1940, is that the fluctuations of all the macro and sectoral variables in the economy are driven by a “reference cycle,” that is, a one-dimensional latent cause of variation. After a fairly long process of generalization and formalization, the literature settled at the beginning of the year 2000 on a model in which (1) both n the number of variables in the dataset and T , the number of observations for each variable, may be large, and (2) all the variables in the dataset depend dynamically on a fixed independent of n , a number of “common factors,” plus variable-specific, usually called “idiosyncratic,” components. The structure of the model can be exemplified as follows: x i t = α i u t + β i u t − 1 + ξ i t , i = 1, … , n , t = 1, … , T , (*) where the observable variables x i t are driven by the white noise u t , which is common to all the variables, the common factor, and by the idiosyncratic component ξ i t . The common factor u t is orthogonal to the idiosyncratic components ξ i t , the idiosyncratic components are mutually orthogonal (or weakly correlated). Lastly, the variations of the common factor u t affect the variable x i t dynamically, that is through the lag polynomial α i + β i L . Asymptotic results for High-Dimensional Factor Models, particularly consistency of estimators of the common factors, are obtained for both n and T tending to infinity. Model ( ∗ ) , generalized to allow for more than one common factor and a rich dynamic loading of the factors, has been studied in a fairly vast literature, with many applications based on macroeconomic datasets: (a) forecasting of inflation, industrial production, and unemployment; (b) structural macroeconomic analysis; and (c) construction of indicators of the Business Cycle. This literature can be broadly classified as belonging to the time- or the frequency-domain approach. The works based on the second are the subject of the present chapter. We start with a brief description of early work on Dynamic Factor Models. Formal definitions and the main Representation Theorem follow. The latter determines the number of common factors in the model by means of the spectral density matrix of the vector ( x 1 t x 2 t ⋯ x n t ) . Dynamic principal components, based on the spectral density of the x ’s, are then used to construct estimators of the common factors. These results, obtained in early 2000, are compared to the literature based on the time-domain approach, in which the covariance matrix of the x ’s and its (static) principal components are used instead of the spectral density and dynamic principal components. Dynamic principal components produce two-sided estimators, which are good within the sample but unfit for forecasting. The estimators based on the time-domain approach are simple and one-sided. However, they require the restriction of finite dimension for the space spanned by the factors. Recent papers have constructed one-sided estimators based on the frequency-domain method for the unrestricted model. These results exploit results on stochastic processes of dimension n that are driven by a q -dimensional white noise, with q < n , that is, singular vector stochastic processes. The main features of this literature are described with some detail. Lastly, we report and comment the results of an empirical paper, the last in a long list, comparing predictions obtained with time- and frequency-domain methods. The paper uses a large monthly U.S. dataset including the Great Moderation and the Great Recession.

Article

The assessment of health-related quality of life is crucially important in the evaluation of healthcare technologies and services. In many countries, economic evaluation plays a prominent role in informing decision making often requiring preference-based measures (PBMs) to assess quality of life. These measures comprise two aspects: a descriptive system where patients can indicate the impact of ill health, and a value set based on the preferences of individuals for each of the health states that can be described. These values are required for the calculation of quality adjusted life years (QALYs), the measure for health benefit used in the vast majority of economic evaluations. The National Institute for Health and Care Excellence (NICE) has used cost per QALY as its preferred framework for economic evaluation of healthcare technologies since its inception in 1999. However, there is often an evidence gap between the clinical measures that are available from clinical studies on the effect of a specific health technology and the PBMs needed to construct QALY measures. Instruments such as the EQ-5D have preference-based scoring systems and are favored by organizations such as NICE but are frequently absent from clinical studies of treatment effect. Even where a PBM is included this may still be insufficient for the needs of the economic evaluation. Trials may have insufficient follow-up, be underpowered to detect relevant events, or include the wrong PBM for the decision- making body. Often this gap is bridged by “mapping”—estimating a relationship between observed clinical outcomes and PBMs, using data from a reference dataset containing both types of information. The estimated statistical model can then be used to predict what the PBM would have been in the clinical study given the available information. There are two approaches to mapping linked to the structure of a PBM. The indirect approach (or response mapping) models the responses to the descriptive system using discrete data models. The expected health utility is calculated as a subsequent step using the estimated probability distribution of health states. The second approach (the direct approach) models the health state utility values directly. Statistical models routinely used in the past for mapping are unable to consider the idiosyncrasies of health utility data. Often they do not work well in practice and can give seriously biased estimates of the value of treatments. Although the bias could, in principle, go in any direction, in practice it tends to result in underestimation of cost effectiveness and consequently distorted funding decisions. This has real effects on patients, clinicians, industry, and the general public. These problems have led some analysts to mistakenly conclude that mapping always induces biases and should be avoided. However, the development and use of more appropriate models has refuted this claim. The need to improve the quality of mapping studies led to the formation of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Mapping to Estimate Health State Utility values from Non-Preference-Based Outcome Measures Task Force to develop good practice guidance in mapping.

Article

Rita Dias Pereira, Pietro Biroli, Titus Galama, Stephanie von Hinke, Hans van Kippersluis, Cornelius A. Rietveld, and Kevin Thom

Nature (one’s genes) and nurture (one’s environment) jointly contribute to the formation and evolution of health and human capital over the life cycle. This complex interplay between genes and environment can be estimated and quantified using genetic information readily available in a growing number of social science data sets. Using genetic data to improve our understanding of individual decision making, inequality, and to guide public policy is possible and promising, but requires a grounding in essential genetic terminology, knowledge of the literature in economics and social-science genetics, and a careful discussion of the policy implications and prospects of the use of genetic data in the social sciences and economics.

Article

General equilibrium theories of spatial agglomeration are closed models of agent location that explain the formation and growth of cities. There are several types of such theories: conventional Arrow-Debreu competitive equilibrium models and monopolistic competition models, as well as game theoretic models including search and matching setups. Three types of spatial agglomeration forces often come into play: trade, production, and knowledge transmission, under which cities are formed in equilibrium as marketplaces, factory towns, and idea laboratories, respectively. Agglomeration dynamics are linked to urban growth in the long run.

Article

Land is everywhere: the substratum of our existence. In addition, land is intimately linked to the dual concept of location in human activity. Together, land and location are essential ingredients for the lives of individuals as well as for national economies. In the early 21st century, there exist two different approaches to incorporating land and location into a general equilibrium theory. Dating from the classic work of von Thünen (1826), a rich variety of land-location density models have been developed. In a density model, a continuum of agents is distributed over a continuous location space. Given that simple calculus can be used in the analysis, these density models continue to be the “workhorse” of urban economics and location theory. However, the behavioral meaning of each agent occupying an infinitesimal “density of land” has long been in question. Given this situation, a radically new approach, called the σ -field approach, was developed in the mid-1980s for modeling land in a general equilibrium framework. In this approach: (1) the totality of land, L , is specified as a subset of ℝ 2 , (2) all possible land parcels in L are given by the σ -field of Lebesgue measurable subsets of L , and (3) each of a finite number of agents is postulated to choose one such parcel. Starting with Berliant (1985), increasingly more sophisticated σ -field models of land have been developed. Given these two different approaches to modeling land within a general equilibrium framework, several attempts have thus far been proposed for bridging the gap between them. But while a systematic study of the relationship between density models and σ -field models remains to be completed, the clarification of this relationship could open a new horizon toward a general equilibrium theory of land.

Article

Albert N. Link and John T. Scott

Science parks, also called research parks, technology parks, or technopolis infrastructures, have increased rapidly in number as many countries have adopted the approach of bringing research-based organizations together in a park. A science park’s cluster of research and technology-based organizations is often located on or near a university campus. The juxtaposition of ongoing research of both the university and the park tenants creates a two-way flow of knowledge; knowledge is transferred between the university and firms, and all parties develop knowledge more effectively because of their symbiotic relationship. Theory and evidence support the belief that the geographic proximity provided to the participating organizations by a science park creates a dynamic cluster that accelerates economic growth and international competitiveness through the innovation-enabling exchanges of knowledge and the transfer of technologies. The process of creating innovations is more efficient because of the agglomeration of research and technology-based firms on or near a university campus. The proximity of a park to multiple sources of knowledge provides greater opportunities for the creation and acquisition of knowledge, especially tacit knowledge, and the geographic proximity therefore reduces the search and acquisition costs for that knowledge. The clustering of multiple research and technology-based organizations within a park enables knowledge spillovers, and with greater productivity from research resources and lower costs, prices for new technologies can be lower, stimulating their use and regional development and growth. In addition to the clustering of the organizations within a park, the geographic proximity of universities affiliated with a park matters too. Evidence shows that a park’s employment growth is greater, other things being the same, when its affiliated university is geographically closer, although evidence suggests that effect has lessened in the 21st century because of the information and communications technology revolution. Further stimulating regional growth, university spin-off companies are more prevalent in a park when it is geographically closer to the affiliated university. The two-way flow of knowledge enabled by clusters of research and technology-based firms in science parks benefits firms located on the park and the affiliated universities. Understanding the mechanisms by which the innovative performance of research and technology-based organizations is increased by their geographic proximity in a science park is important for formulating public and private sector policies toward park formations because successful national innovation systems require the two-way knowledge flow, among firms in a park and between firms and universities, that is fostered by the science park infrastructure.

Article

Esteban Rossi-Hansberg

The geography of economic activity refers to the distribution of population, production, and consumption of goods and services in geographic space. The geography of growth and development refers to the local growth and decline of economic activity and the overall distribution of these local changes within and across countries. The pattern of growth in space can vary substantially across regions, countries, and industries. Ultimately, these patterns can help explain the role that spatial frictions (like transport and migration costs) can play in the overall development of the world economy. The interaction of agglomeration and congestion forces determines the density of economic activity in particular locations. Agglomeration forces refer to forces that bring together agents and firms by conveying benefits from locating close to each other, or for locating in a particular area. Examples include local technology and institutions, natural resources and local amenities, infrastructure, as well as knowledge spillovers. Congestion forces refer to the disadvantages of locating close to each other. They include traffic, high land prices, as well as crime and other urban dis-amenities. The balance of these forces is mediated by the ability of individuals, firms, good and services, as well as ideas and technology, to move across space: namely, migration, relocation, transport, commuting and communication costs. These spatial frictions together with the varying strength of congestion and agglomeration forces determines the distribution of economic activity. Changes in these forces and frictions—some purposefully made by agents given the economic environment they face and some exogenous—determine the geography of growth and development. The main evolution of the forces that influence the geography of growth and development have been changes in transport technology, the diffusion of general-purpose technologies, and the structural transformation of economies from agriculture, to manufacturing, to service-oriented economies. There are many challenges in modeling and quantifying these forces and their effects. Nevertheless, doing so is essential to evaluate the impact of a variety of phenomena, from climate change to the effects of globalization and advances in information technology.

Article

Pao-Li Chang and Wen-Tai Hsu

This article reviews interrelated power-law phenomena in geography and trade. Given the empirical evidence on the gravity equation in trade flows across countries and regions, its theoretical underpinnings are reviewed. The gravity equation amounts to saying that trade flows follow a power law in distance (or geographic barriers). It is concluded that in the environment with firm heterogeneity, the power law in firm size is the key condition for the gravity equation to arise. A distribution is said to follow a power law if its tail probability follows a power function in the distribution’s right tail. The second part of this article reviews the literature that provides the microfoundation for the power law in firm size and reviews how this power law (in firm size) may be related to the power laws in other distributions (in incomes, firm productivity and city size).

Article

Hites Ahir and Prakash Loungani

On average across countries, house prices have been on an upward trend over the past 50 years, following a 100-year period over which there was no long-term increase. The rising trend in prices reflects a demand boost due to greater availability of housing finance running up against supply constraints, as land has increasingly become a fixed factor for many reasons. The entire 150-year period has been marked by boom and bust cycles around the trend. These also reflect episodes of demand momentum—due to cheap finance or reasonable or unreasonable expectations of higher incomes—meeting a sluggish supply response. Policy options to manage boom–bust cycles, given the significant costs to the economy from house price busts, are discussed.

Article

Richard Smith and Johanna Hanefeld

Global trade—the movement of goods, services, people, and capital between countries—is at the center of modern globalization. Since the late 20th century trade has also become established as a critical determinant of public health. As the raison d’être of trade is to increase both wealth and the availability of goods and services, changing trade patterns will inevitably impact many of the known determinants of health, including employment, nutrition, environmental factors, social capital, and education. Trade will also impact the health sector itself, most clearly through direct trade in health-related goods and services (such as pharmaceuticals, health workers, foreign direct investment in health services, and mobile patients), but also more broadly in determining tax receipts and thus overall public expenditures. It is also the case that trade—especially rapid and widespread movement of people, animals, and goods—may facilitate the rapid and widespread spread of disease. Trade, and associated policies governing and responding to that trade, has thus become increasingly recognized as a critical driver of health issues. The design of trade policies that reduce the potential health risks associated with freer trade while maximizing the positive impact of trade liberalization on the social determinants of health is still in its infancy. There remains a lack of sound empirical evidence demonstrating how trade liberalization links directly and indirectly to health. Even though the positive link between increased trade, poverty reduction, and economic growth is widely accepted, evidence regarding the impact of trade liberalization on the social determinants of health varies from one national context to another. Hence, adapting trade liberalization to national conditions is important in ensuring desired outcomes. Yet although evidence is necessary, it is not sufficient to ensure that health is more integrated in trade negotiations and decision-making. There is a substantive requirement for those with a health remit to engage in negotiation with those from other sectors and from other geographic locations.

Article

Sushant Acharya and Paolo Pesenti

Global policy spillovers can be defined as the effect of policy changes in one country on economic outcomes in other countries. The literature has mainly focused on monetary policy interdependencies and has identified three channels through which policy spillovers can materialize. The first is the expenditure-shifting channel—a monetary expansion in one country depreciates its currency, making its goods cheaper relative to those in other countries and shifting global demand toward domestic tradable goods. The second is the expenditure-changing channel—expansionary monetary policy in one country raises both domestic and foreign expenditure. The third is the financial spillovers channel—expansionary monetary policy in one country eases financial conditions in other economies. The literature generally finds that the net transmission effect is positive but small. However, estimated spillovers vary widely across countries and over time. In the aftermath of the Great Recession, the policy debate has devoted special attention to the possibility that the magnitude and sign of international spillovers might have changed in an environment of low interest rates worldwide, as the expenditure-shifting channel becomes more relevant when the effective lower bound reduces the effectiveness of conventional monetary policies.