1-3 of 3 Results  for:

  • Econometrics, Experimental and Quantitative Methods x
  • Financial Economics x
Clear all


Knut Are Aastveit, James Mitchell, Francesco Ravazzolo, and Herman K. van Dijk

Increasingly, professional forecasters and academic researchers in economics present model-based and subjective or judgment-based forecasts that are accompanied by some measure of uncertainty. In its most complete form this measure is a probability density function for future values of the variable or variables of interest. At the same time, combinations of forecast densities are being used in order to integrate information coming from multiple sources such as experts, models, and large micro-data sets. Given the increased relevance of forecast density combinations, this article explores their genesis and evolution both inside and outside economics. A fundamental density combination equation is specified, which shows that various frequentist as well as Bayesian approaches give different specific contents to this density. In its simplest case, it is a restricted finite mixture, giving fixed equal weights to the various individual densities. The specification of the fundamental density combination equation has been made more flexible in recent literature. It has evolved from using simple average weights to optimized weights to “richer” procedures that allow for time variation, learning features, and model incompleteness. The recent history and evolution of forecast density combination methods, together with their potential and benefits, are illustrated in the policymaking environment of central banks.


Peter Robinson

Long memory models are statistical models that describe strong correlation or dependence across time series data. This kind of phenomenon is often referred to as “long memory” or “long-range dependence.” It refers to persisting correlation between distant observations in a time series. For scalar time series observed at equal intervals of time that are covariance stationary, so that the mean, variance, and autocovariances (between observations separated by a lag j) do not vary over time, it typically implies that the autocovariances decay so slowly, as j increases, as not to be absolutely summable. However, it can also refer to certain nonstationary time series, including ones with an autoregressive unit root, that exhibit even stronger correlation at long lags. Evidence of long memory has often been been found in economic and financial time series, where the noted extension to possible nonstationarity can cover many macroeconomic time series, as well as in such fields as astronomy, agriculture, geophysics, and chemistry. As long memory is now a technically well developed topic, formal definitions are needed. But by way of partial motivation, long memory models can be thought of as complementary to the very well known and widely applied stationary and invertible autoregressive and moving average (ARMA) models, whose autocovariances are not only summable but decay exponentially fast as a function of lag j. Such models are often referred to as “short memory” models, becuse there is negligible correlation across distant time intervals. These models are often combined with the most basic long memory ones, however, because together they offer the ability to describe both short and long memory feartures in many time series.


Jesús Gonzalo and Jean-Yves Pitarakis

Predictive regressions are a widely used econometric environment for assessing the predictability of economic and financial variables using past values of one or more predictors. The nature of the applications considered by practitioners often involve the use of predictors that have highly persistent, smoothly varying dynamics as opposed to the much noisier nature of the variable being predicted. This imbalance tends to affect the accuracy of the estimates of the model parameters and the validity of inferences about them when one uses standard methods that do not explicitly recognize this and related complications. A growing literature aimed at introducing novel techniques specifically designed to produce accurate inferences in such environments ensued. The frequent use of these predictive regressions in applied work has also led practitioners to question the validity of viewing predictability within a linear setting that ignores the possibility that predictability may occasionally be switched off. This in turn has generated a new stream of research aiming at introducing regime-specific behavior within predictive regressions in order to explicitly capture phenomena such as episodic predictability.