1-3 of 3 Results  for:

  • Macroeconomics and Monetary Economics x
  • Labor and Demographic Economics x
Clear all


David E. Bloom, Michael Kuhn, and Klaus Prettner

The strong observable correlation between health and economic growth is crucial for economic development and sustained well-being, but the underlying causality and mechanisms are difficult to conceptualize. Three issues are of central concern. First, assessing and disentangling causality between health and economic growth are empirically challenging. Second, the relation between health and economic growth changes over the process of economic development. In less developed countries, poor health often reduces labor force participation, particularly among women, and deters investments in education such that fertility stays high and the economy remains trapped in a stagnation equilibrium. By contrast, in more developed countries, health investments primarily lead to rising longevity, which may not significantly affect labor force participation and workforce productivity. Third, different dimensions of health (mortality vs. morbidity, children’s and women’s health, and health at older ages) relate to different economic effects. By changing the duration and riskiness of the life course, mortality affects individual investment choices, whereas morbidity relates more directly to work productivity and education. Children’s health affects their education and has long-lasting implications for labor force participation and productivity later in life. Women’s health is associated with substantial intergenerational spillover effects and influences women’s empowerment and fertility decisions. Finally, health at older ages has implications for retirement and care.


Brant Abbott and Giovanni Gallipoli

This article focuses on the distribution of human capital and its implications for the accrual of economic resources to individuals and households. Human capital inequality can be thought of as measuring disparity in the ownership of labor factors of production, which are usually compensated in the form of wage income. Earnings inequality is tightly related to human capital inequality. However, it only measures disparity in payments to labor rather than dispersion in the market value of the underlying stocks of human capital. Hence, measures of earnings dispersion provide a partial and incomplete view of the underlying distribution of productive skills and of the income generated by way of them. Despite its shortcomings, a fairly common way to gauge the distributional implications of human capital inequality is to examine the distribution of labor income. While it is not always obvious what accounts for returns to human capital, an established approach in the empirical literature is to decompose measured earnings into permanent and transitory components. A second approach focuses on the lifetime present value of earnings. Lifetime earnings are, by definition, an ex post measure only observable at the end of an individual’s working lifetime. One limitation of this approach is that it assigns a value based on one of the many possible realizations of human capital returns. Arguably, this ignores the option value associated with alternative, but unobserved, potential earning paths that may be valuable ex ante. Hence, ex post lifetime earnings reflect both the genuine value of human capital and the impact of the particular realization of unpredictable shocks (luck). A different but related measure focuses on the ex ante value of expected lifetime earnings, which differs from ex post (realized) lifetime earnings insofar as they account for the value of yet-to-be-realized payoffs along different potential earning paths. Ex ante expectations reflect how much an individual reasonably anticipates earning over the rest of their life based on their current stock of human capital, averaging over possible realizations of luck and other income shifters that may arise. The discounted value of different potential paths of future earnings can be computed using risk-less or state-dependent discount factors.


Stock-flow matching is a simple and elegant framework of dynamic trade in differentiated goods. Flows of entering traders match and exchange with the stocks of previously unsuccessful traders on the other side of the market. A buyer or seller who enters a market for a single, indivisible good such as a job or a home does not experience impediments to trade. All traders are fully informed about the available trading options; however, each of the available options in the stock on the other side of the market may or may not be suitable. If fortunate, this entering trader immediately finds a viable option in the stock of available opportunities and trade occurs straightaway. If unfortunate, none of the available opportunities suit the entrant. This buyer or seller now joins the stocks of unfulfilled traders who must wait for a new, suitable partner to enter. Three striking empirical regularities emerge from this microstructure. First, as the stock of buyers does not match with the stock of sellers, but with the flow of new sellers, the flow of new entrants becomes an important explanatory variable for aggregate trading rates. Second, the traders’ exit rates from the market are initially high, but if they fail to match quickly the exit rates become substantially slower. Third, these exit rates depend on different variables at different phases of an agent’s stay in the market. The probability that a new buyer will trade successfully depends only on the stock of sellers in the market. In contrast, the exit rate of an old buyer depends positively on the flow of new sellers, negatively on the stock of old buyers, and is independent of the stock of sellers. These three empirical relationships not only differ from those found in the familiar search literature but also conform to empirical evidence observed from unemployment outflows. Moreover, adopting the stock-flow approach enriches our understanding of output dynamics, employment flows, and aggregate economic performance. These trading mechanics generate endogenous price dispersion and price dynamics—prices depend on whether the buyer or the seller is the recent entrant, and on how many viable traders were waiting for the entrant, which varies over time. The stock-flow structure has provided insights about housing, temporary employment, and taxicab markets.