## 1-4 of 4 Results  for:

• Economic Theory and Mathematical Models
• International Economics
Clear all

## Geography, Trade, and Power-Law Phenomena

This article reviews interrelated power-law phenomena in geography and trade. Given the empirical evidence on the gravity equation in trade flows across countries and regions, its theoretical underpinnings are reviewed. The gravity equation amounts to saying that trade flows follow a power law in distance (or geographic barriers). It is concluded that in the environment with firm heterogeneity, the power law in firm size is the key condition for the gravity equation to arise. A distribution is said to follow a power law if its tail probability follows a power function in the distribution’s right tail. The second part of this article reviews the literature that provides the microfoundation for the power law in firm size and reviews how this power law (in firm size) may be related to the power laws in other distributions (in incomes, firm productivity and city size).

## Sparse Grids for Dynamic Economic Models

Solving dynamic economic models that capture salient real-world heterogeneity and nonlinearity requires the approximation of high-dimensional functions. As their dimensionality increases, compute time and storage requirements grow exponentially. Sparse grids alleviate this curse of dimensionality by substantially reducing the number of interpolation nodes, that is, grid points needed to achieve a desired level of accuracy. The construction principle of sparse grids is to extend univariate interpolation formulae to the multivariate case by choosing linear combinations of tensor products in a way that reduces the number of grid points by orders of magnitude relative to a full tensor-product grid and doing so without substantially increasing interpolation errors. The most popular versions of sparse grids used in economics are (dimension-adaptive) Smolyak sparse grids that use global polynomial basis functions, and (spatially adaptive) sparse grids with local basis functions. The former can economize on the number of interpolation nodes for sufficiently smooth functions, while the latter can also handle non-smooth functions with locally distinct behavior such as kinks. In economics, sparse grids are particularly useful for interpolating the policy and value functions of dynamic models with state spaces between two and several dozen dimensions, depending on the application. In discrete-time models, sparse grid interpolation can be embedded in standard time iteration or value function iteration algorithms. In continuous-time models, sparse grids can be embedded in finite-difference methods for solving partial differential equations like Hamilton-Jacobi-Bellman equations. In both cases, local adaptivity, as well as spatial adaptivity, can add a second layer of sparsity to the fundamental sparse-grid construction. Beyond these salient use-cases in economics, sparse grids can also accelerate other computational tasks that arise in high-dimensional settings, including regression, classification, density estimation, quadrature, and uncertainty quantification.