1-8 of 8 Results

  • Keywords: selection x
Clear all

Article

Hendrik Schmitz and Svenja Winkler

The terms information and risk aversion play central roles in healthcare economics. While risk aversion is among the main reasons for the existence of health insurance, information asymmetries between insured individual and insurance company potentially lead to moral hazard or adverse selection. This has implications for the optimal design of health insurance contracts, but whether there is indeed moral hazard or adverse selection is ultimately an empirical question. Recently, there was even a debate whether the opposite of adverse selection—advantageous selection—prevails. Private information on risk aversion might weigh out information asymmetries regarding risk type and lead to more insurance coverage of healthy individuals (instead of less insurance coverage in adverse selection). Information and risk preferences are important not only in health insurance but more generally in health economics. For instance, they affect health behavior and, consequently, health outcomes. The degree of risk aversion, the ability to perceive risks, and the availability of information about risks partly explain why some individuals engage in unhealthy behavior while others refrain from smoking, drinking, or the like. Information has several dimensions. Apart from information on one’s personal health status, risk preferences, or health risks, consumer information on provider quality or health insurance supply is central in the economics of healthcare. Even though healthcare systems are necessarily highly regulated throughout the world, all systems at least allow for some market elements. These typically include the possibility of consumer choice, for instance, regarding health insurance coverage or choice of medical provider. An important question is whether consumer choice elements work in the healthcare sector—that is, whether consumers actually make rational or optimal decisions—and whether more information can improve decision quality.

Article

Ching-to Albert Ma and Henry Y. Mak

Health services providers receive payments mostly from private or public insurers rather than patients. Provider incentive problems arise because an insurer misses information about the provider and patients, and has imperfect control over the provider’s treatment, quality, and cost decisions. Different provider payment systems, such as prospective payment, capitation, cost reimbursement, fee-for-service, and value-based payment, generate different treatment quality and cost incentives. The important issue is that a payment system implements an efficient quality-cost outcome if and only if it makes the provider internalize the social benefits and costs of services. Thus, the internalization principle can be used to evaluate payment systems across different settings. The most common payment systems are prospective payment, which pays a fixed price for service rendered, and cost reimbursement, which pays according to costs of service rendered. In a setting where the provider chooses health service quality and cost reduction effort, prospective payment satisfies the internalization principle but cost reimbursement does not. The reason is that prospective payment forces the provider to be responsible for cost, but cost reimbursement relieves the provider of the cost responsibility. Beyond this simple setting, the provider may select patients based on patients’ cost heterogeneity. Then neither prospective payment nor cost reimbursement achieves efficient quality and cost incentives. A mixed system that combines prospective payment and cost reimbursement performs better than each of its components alone. In general, the provider’s preferences and available strategies determine if a payment system may achieve internalization. If the provider is altruistic toward patients, prospective payment can be adjusted to accommodate altruism when the provider’s degree of altruism is known to the insurer. However, when the degree of altruism is unknown, even a mixed system may fail the internalization principle. Also, the internalization principle fails under prospective payment when the provider can upcode patient diagnoses for more favorable prices. Cost reimbursement attenuates the upcoding incentive. Finally, when the provider can choose many qualities, either prospective payment and cost reimbursement should be combined with the insurer’s disclosure on quality and cost information to satisfy the internalization principle. When good healthcare quality is interpreted as a good match between patients and treatments, payment design is to promote good matches. The internalization principle now requires the provider to bear benefits and costs of diagnosis effort and treatment choice. A mixed system may deliver efficient matching incentives. Payment systems necessarily interact with other incentive mechanisms such as patients’ reactions against the provider’s quality choice and other providers’ competitive strategies. Payment systems then become part of organizational incentives.

Article

Sherry Glied and Richard Frank

Mental health economics addresses problems that are common to all of health economics, but that occur with greater severity in this context. Several characteristics of mental health conditions—age of onset, chronicity, observability, and external effects—make them particularly economically challenging, and a range of policies have evolved to address these problems. The need for insurance—and for social insurance—to address mental health problems has grown. There is an expanding number of effective treatments available for mental health conditions, and these treatments can be relatively costly. The particular characteristics of mental health conditions exacerbate the usual problems of moral hazard, adverse selection, and agency. There is increased recognition, in both the policy and economics literatures, of the array of services and supports required to enable people with severe mental illnesses to function in society’s mainstream. The need for such non-medical services, generates economic problems of cross-system coordination and opportunism. Moreover, the impairments imposed by mental disorders have become more disruptive to the labor market because the nature of work is changing in a manner that creates special disadvantages to people with these conditions. New directions for mental health economics would address these effects.

Article

Limited dependent variables considers regression models where the dependent variable takes limited values like zero and one for binary choice mowedels, or a multinomial model where there is a few choices like modes of transportation, for example, bus, train, or a car. Binary choice examples in economics include a woman’s decision to participate in the labor force, or a worker’s decision to join a union. Other examples include whether a consumer defaults on a loan or a credit card, or whether they purchase a house or a car. This qualitative variable is recoded as one if the female participates in the labor force (or the consumer defaults on a loan) and zero if she does not participate (or the consumer does not default on the loan). Least squares using a binary choice model is inferior to logit or probit regressions. When the dependent variable is a fraction or proportion, inverse logit regressions are appropriate as well as fractional logit quasi-maximum likelihood. An example of the inverse logit regression is the effect of beer tax on reducing motor vehicle fatality rates from drunken driving. The fractional logit quasi-maximum likelihood is illustrated using an equation explaining the proportion of participants in a pension plan using firm data. The probit regression is illustrated with a fertility empirical example, showing that parental preferences for a mixed sibling-sex composition in developed countries has a significant and positive effect on the probability of having an additional child. Multinomial choice models where the number of choices is more than 2, like, bond ratings in Finance, may have a natural ordering. Another example is the response to an opinion survey which could vary from strongly agree to strongly disagree. Alternatively, this choice may not have a natural ordering like the choice of occupation or modes of transportation. The Censored regression model is motivated with estimating the expenditures on cars or estimating the amount of mortgage lending. In this case, the observations are censored because we observe the expenditures on a car (or the mortgage amount) only if the car is bought or the mortgage approved. In studying poverty, we exclude the rich from our sample. In this case, the sample is not random. Applying least squares to the truncated sample leads to biased and inconsistent results. This differs from censoring. In the latter case, no data is excluded. In fact, we observe the characteristics of all mortgage applicants even those that do not actually get their mortgage approved. Selection bias occurs when the sample is not randomly drawn. This is illustrated with a labor participating equation (the selection equation) and an earnings equation, where earnings are observed only if the worker participates in the labor force, otherwise it is zero. Extensions to panel data limited dependent variable models are also discussed and empirical examples given.

Article

Murray Z. Frank, Vidhan Goyal, and Tao Shen

The pecking order theory of corporate capital structure developed by states that issuing securities is subject to an adverse selection problem. Managers endowed with private information have incentives to issue overpriced risky securities. But they also understand that issuing such securities will result in a negative price reaction because rational investors, who are at an information disadvantage, will discount the prices of any risky securities the firm issues. Consequently, firms follow a pecking order: use internal resources when possible; if internal funds are inadequate, obtain external debt; external equity is the last resort. Large firms rely significantly on internal finance to meet their needs. External net debt issues finance the minor deficits that remain. Equity is not a significant source of financing for large firms. By contrast, small firms lack sufficient internal resources and obtain external finance. Although much of it is equity, there are substantial issues of debt by small firms. Firms are sorted into three portfolios based on whether they have a surplus or a deficit. About 15% of firm-year observations are in the surplus group. Firms primarily use surpluses to pay down debt. About 56% of firm-year observations are in the balance group. These firms generate internal cash flows that are just about enough to meet their investment and dividend needs. They issue debt, which is just enough to meet their debt repayments. They are relatively inactive in equity markets. About 29% of firm-year observations are in the deficit group. Deficits arise because of a combination of negative profitability and significant investments in both real and financial assets. Some financing patterns in the data are consistent with a pecking order: firms with moderate deficits favor debt issues; firms with very high deficits rely much more on equity than debt. Others are not: many equity-issuing firms do not seem to have entirely used up the debt capacity; some with a surplus issue equity. The theory suggests a sharp discontinuity in financing methods between surplus firms and deficit firms, and another at debt capacity. The literature provides little support for the predicted threshold effects. The theoretical work has shown that adverse selection does not necessarily lead to pecking order behavior. The pecking order is obtained only under special conditions. With both risky debt and equity being issued, there is often scope for many equilibria, and there is no clear basis for selecting among them. A pecking order may or may not emerge from the theory. Several articles show that the adverse selection problem can be solved by certain financing strategies or properly designed managerial contracts and can even disappear in dynamic models. Although adverse selection can generate a pecking order, it can also be caused by agency considerations, transaction costs, tax consideration, or behavioral decision-making considerations. Under standard tests in the literature, these alternative underlying motivations are commonly observationally equivalent.

Article

In many countries of the world, consumers choose their health insurance coverage from a large menu of often complex options supplied by private insurance companies. Economic benefits of the wide choice of health insurance options depend on the extent to which the consumers are active, well informed, and sophisticated decision makers capable of choosing plans that are well-suited to their individual circumstances. There are many possible ways how consumers’ actual decision making in the health insurance domain can depart from the standard model of health insurance demand of a rational risk-averse consumer. For example, consumers can have inaccurate subjective beliefs about characteristics of alternative plans in their choice set or about the distribution of health expenditure risk because of cognitive or informational constraints; or they can prefer to rely on heuristics when the plan choice problem features a large number of options with complex cost-sharing design. The second decade of the 21st century has seen a burgeoning number of studies assessing the quality of consumer choices of health insurance, both in the lab and in the field, and financial and welfare consequences of poor choices in this context. These studies demonstrate that consumers often find it difficult to make efficient choices of private health insurance due to reasons such as inertia, misinformation, and the lack of basic insurance literacy. These findings challenge the conventional rationality assumptions of the standard economic model of insurance choice and call for policies that can enhance the quality of consumer choices in the health insurance domain.

Article

Richard C. van Kleef, Thomas G. McGuire, Frederik T. Schut, and Wynand P. M. M. van de Ven

Many countries rely on social health insurance supplied by competing insurers to enhance fairness and efficiency in healthcare financing. Premiums in these settings are typically community rated per health plan. Though community rating can help achieve fairness objectives, it also leads to a variety of problems due to risk selection, that is, actions by consumers and insurers to exploit “unpriced risk” heterogeneity. From the viewpoint of a consumer, unpriced risk refers to the gap between her expected spending under a health plan and the net premium for that plan. Heterogeneity in unpriced risk can lead to selection by consumers in and out of insurance and between high- and low-value plans. These forms of risk selection can result in upward premium spirals, inefficient take-up of basic coverage, and inefficient sorting of consumers between high- and low-value plans. From the viewpoint of an insurer, unpriced risk refers to the gap between his expected costs under a certain contract and the revenues he receives for that contract. Heterogeneity in unpriced risk incentivizes insurers to alter their plan offerings in order to attract profitable people, resulting in inefficient plan design and possibly in the unavailability of high-quality care. Moreover, insurers have incentives to target profitable people via marketing tools and customer service, which—from a societal perspective—can be considered a waste of resources. Common tools to counteract selection problems are risk equalization, risk sharing, and risk rating of premiums. All three strategies reduce unpriced risk heterogeneity faced by insurers and thus diminish selection actions by insurers such as the altering of plan offerings. Risk rating of premiums also reduces unpriced risk heterogeneity faced by consumers and thus mitigates selection in and out of insurance and between high- and low-value plans. All three strategies, however, come with trade-offs. A smart blend takes advantage of the strengths, while reducing the weaknesses of each strategy. The optimal payment system configuration will depend on how a regulator weighs fairness and efficiency and on how the healthcare system is organized.

Article

Mahendrarajah Nimalendran and Giovanni Petrella

The most important friction studied in the microstructure literature is the adverse selection borne by liquidity providers when facing traders who are better informed, and the bid-ask spread quoted by market makers is one of these frictions in securities markets that has been extensively studied. In the early 1980s, the transparency of U.S. stock markets was limited to post-trade end-of-day transactions prices, and there were no easily available market quotes for researchers and market participants to study the effects of bid-ask spread on the liquidity and quality of markets. This led to models that used the auto-covariance of daily transactions prices to estimate the bid-ask spread. In the early 1990s, the U.S. stock markets (NYSE/AMEX/NASDAQ) provided pre-trade quotes and transaction sizes for researchers and market participants. The increased transparency and access to quotes and trades led to the development of theoretical models and empirical methods to decompose the bid-ask spread into its components: adverse selection, inventory, and order processing. These models and methods can be broadly classified into those that use the serial covariance properties of quotes and transaction prices, and others that use a trade direction indicator and a regression approach to decompose the bid-ask spread. Covariance and trade indicator models are equivalent in structural form, but they differ in parameters’ estimation (reduced form). The basic microstructure model is composed of two equations; the first defines the law of motion of the “true” price, while the second defines the process generating transaction price. From these two equations, an appropriate relation for transaction price changes is derived in terms of observed variables. A crucial point that differentiates the two approaches is the assumption made for estimation purposes relative to the behavior of order arrival, which is the probability of order reversal or continuation. Thus, the specification of the most general models allows for including an additional parameter that accounts for order behavior. The article provides a unified framework to compare the different models with respect to the restrictions that are imposed, and how this affects the relative proportions of the different components of the spread.