1-2 of 2 Results

  • Keywords: bootstrap x
Clear all

Article

Giuseppe Cavaliere, Heino Bohn Nielsen, and Anders Rahbek

While often simple to implement in practice, application of the bootstrap in econometric modeling of economic and financial time series requires establishing validity of the bootstrap. Establishing bootstrap asymptotic validity relies on verifying often nonstandard regularity conditions. In particular, bootstrap versions of classic convergence in probability and distribution, and hence of laws of large numbers and central limit theorems, are critical ingredients. Crucially, these depend on the type of bootstrap applied (e.g., wild or independently and identically distributed (i.i.d.) bootstrap) and on the underlying econometric model and data. Regularity conditions and their implications for possible improvements in terms of (empirical) size and power for bootstrap-based testing differ from standard asymptotic testing, which can be illustrated by simulations.

Article

Helmut Herwartz and Alexander Lange

Unlike traditional first order asymptotic approximations, the bootstrap is a simulation method to solve inferential issues in statistics and econometrics conditional on the available sample information (e.g. constructing confidence intervals, generating critical values for test statistics). Even though econometric theory yet provides sophisticated central limit theory covering various data characteristics, bootstrap approaches are of particular appeal if establishing asymptotic pivotalness of (econometric) diagnostics is infeasible or requires rather complex assessments of estimation uncertainty. Moreover, empirical macroeconomic analysis is typically constrained by short- to medium-sized time windows of sample information, and convergence of macroeconometric model estimates toward their asymptotic limits is often slow. Consistent bootstrap schemes have the potential to improve empirical significance levels in macroeconometric analysis and, moreover, could avoid explicit assessments of estimation uncertainty. In addition, as time-varying (co)variance structures and unmodeled serial correlation patterns are frequently diagnosed in macroeconometric analysis, more advanced bootstrap techniques (e.g., wild bootstrap, moving-block bootstrap) have been developed to account for nonpivotalness as a results of such data characteristics.