1-2 of 2 Results

  • Keywords: data revisions x
Clear all


Most applied researchers in macroeconomics who work with official macroeconomic statistics (such as those found in the National Accounts, the Balance of Payments, national government budgets, labor force statistics, etc.) treat data as immutable rather than subject to measurement error and revision. Some of this error may be caused by disagreement or confusion about what should be measured. Some may be due to the practical challenges of producing timely, accurate, and precise estimates. The economic importance of measurement error may be accentuated by simple arithmetic transformations of the data, or by more complex but still common transformations to remove seasonal or other fluctuations. As a result, measurement error is seemingly omnipresent in macroeconomics. Even the most widely used measures such as Gross Domestic Products (GDP) are acknowledged to be poor measures of aggregate welfare as they omit leisure and non-market production activity and fail to consider intertemporal issues related to the sustainability of economic activity. But even modest attempts to improve GDP estimates can generate considerable controversy in practice. Common statistical approaches to allow for measurement errors, including most factor models, rely on assumptions that are at odds with common economic assumptions which imply that measurement errors in published aggregate series should behave much like forecast errors. Fortunately, recent research has shown how multiple data releases may be combined in a flexible way to give improved estimates of the underlying quantities. Increasingly, the challenge for macroeconomists is to recognize the impact that measurement error may have on their analysis and to condition their policy advice on a realistic assessment of the quality of their available information.


Michael P. Clements and Ana Beatriz Galvão

At a given point in time, a forecaster will have access to data on macroeconomic variables that have been subject to different numbers of rounds of revisions, leading to varying degrees of data maturity. Observations referring to the very recent past will be first-release data, or data which has as yet been revised only a few times. Observations referring to a decade ago will typically have been subject to many rounds of revisions. How should the forecaster use the data to generate forecasts of the future? The conventional approach would be to estimate the forecasting model using the latest vintage of data available at that time, implicitly ignoring the differences in data maturity across observations. The conventional approach for real-time forecasting treats the data as given, that is, it ignores the fact that it will be revised. In some cases, the costs of this approach are point predictions and assessments of forecasting uncertainty that are less accurate than approaches to forecasting that explicitly allow for data revisions. There are several ways to “allow for data revisions,” including modeling the data revisions explicitly, an agnostic or reduced-form approach, and using only largely unrevised data. The choice of method partly depends on whether the aim is to forecast an earlier release or the fully revised values.