1-2 of 2 Results

  • Keywords: density forecasts x
Clear all

Article

Knut Are Aastveit, James Mitchell, Francesco Ravazzolo, and Herman K. van Dijk

Increasingly, professional forecasters and academic researchers in economics present model-based and subjective or judgment-based forecasts that are accompanied by some measure of uncertainty. In its most complete form this measure is a probability density function for future values of the variable or variables of interest. At the same time, combinations of forecast densities are being used in order to integrate information coming from multiple sources such as experts, models, and large micro-data sets. Given the increased relevance of forecast density combinations, this article explores their genesis and evolution both inside and outside economics. A fundamental density combination equation is specified, which shows that various frequentist as well as Bayesian approaches give different specific contents to this density. In its simplest case, it is a restricted finite mixture, giving fixed equal weights to the various individual densities. The specification of the fundamental density combination equation has been made more flexible in recent literature. It has evolved from using simple average weights to optimized weights to “richer” procedures that allow for time variation, learning features, and model incompleteness. The recent history and evolution of forecast density combination methods, together with their potential and benefits, are illustrated in the policymaking environment of central banks.

Article

Michael P. Clements and Ana Beatriz Galvão

At a given point in time, a forecaster will have access to data on macroeconomic variables that have been subject to different numbers of rounds of revisions, leading to varying degrees of data maturity. Observations referring to the very recent past will be first-release data, or data which has as yet been revised only a few times. Observations referring to a decade ago will typically have been subject to many rounds of revisions. How should the forecaster use the data to generate forecasts of the future? The conventional approach would be to estimate the forecasting model using the latest vintage of data available at that time, implicitly ignoring the differences in data maturity across observations. The conventional approach for real-time forecasting treats the data as given, that is, it ignores the fact that it will be revised. In some cases, the costs of this approach are point predictions and assessments of forecasting uncertainty that are less accurate than approaches to forecasting that explicitly allow for data revisions. There are several ways to “allow for data revisions,” including modeling the data revisions explicitly, an agnostic or reduced-form approach, and using only largely unrevised data. The choice of method partly depends on whether the aim is to forecast an earlier release or the fully revised values.