1-4 of 4 Results

  • Keywords: health technology assessment x
Clear all

Article

Michael Drummond, Rosanna Tarricone, and Aleksandra Torbica

There are a number of challenges in the economic evaluation of medical devices (MDs). They are typically less regulated than pharmaceuticals, and the clinical evidence requirements for market authorization are generally lower. There are also specific characteristics of MDs, such as the device–user interaction (learning curve), the incremental nature of innovation, the dynamic nature of pricing, and the broader organizational impact. Therefore, a number of initiatives need to be taken in order to facilitate the economic evaluation of MDs. First, the regulatory processes for MDs need to be strengthened and more closely aligned to the needs of economic evaluation. Second, the methods of economic evaluation need to be enhanced by improving the analysis of the available clinical data, establishing high-quality clinical registries, and better recognizing MDs’ specific characteristics. Third, the market entry and diffusion of MDs need to be better managed by understanding the key influences on MD diffusion and linking diffusion with cost-effectiveness evidence through the use of performance-based risk-sharing arrangements.

Article

The evidence produced by healthcare economic evaluation studies is a key component of any Health Technology Assessment (HTA) process designed to inform resource allocation decisions in a budget-limited context. To improve the quality (and harmonize the generation process) of such evidence, many HTA agencies have established methodological guidelines describing the normative framework inspiring their decision-making process. The information requirements that economic evaluation analyses for HTA must satisfy typically involve the use of complex quantitative syntheses of multiple available datasets, handling mixtures of aggregate and patient-level information, and the use of sophisticated statistical models for the analysis of non-Normal data (e.g., time-to-event, quality of life and costs). Much of the recent methodological research in economic evaluation for healthcare has developed in response to these needs, in terms of sound statistical decision-theoretic foundations, and is increasingly being formulated within a Bayesian paradigm. The rationale for this preference lies in the fact that by taking a probabilistic approach, based on decision rules and available information, a Bayesian economic evaluation study can explicitly account for relevant sources of uncertainty in the decision process and produce information to identify an “optimal” course of actions. Moreover, the Bayesian approach naturally allows the incorporation of an element of judgment or evidence from different sources (e.g., expert opinion or multiple studies) into the analysis. This is particularly important when, as often occurs in economic evaluation for HTA, the evidence base is sparse and requires some inevitable mathematical modeling to bridge the gaps in the available data. The availability of free and open source software in the last two decades has greatly reduced the computational costs and facilitated the application of Bayesian methods and has the potential to improve the work of modelers and regulators alike, thus advancing the fields of economic evaluation of healthcare interventions. This chapter provides an overview of the areas where Bayesian methods have contributed to the address the methodological needs that stem from the normative framework adopted by a number of HTA agencies.

Article

Multi-criteria decision analysis (MCDA) is increasingly used to support healthcare decision-making. MCDA involves decision makers evaluating the alternatives under consideration based on the explicit weighting of criteria relevant to the overarching decision—in order to, depending on the application, rank (or prioritize) or choose between the alternatives. A prominent example of MCDA applied to healthcare decision-making that has received a lot of attention in recent years and is the main subject of this article is choosing which health “technologies” (i.e., drugs, devices, procedures, etc.) to fund—a process known as health technology assessment (HTA). Other applications include prioritizing patients for surgery, prioritizing diseases for R&D, and decision-making about licensing treatments. Most applications are based on weighted-sum models. Such models involve explicitly weighting the criteria and rating the alternatives on the criteria, with each alternative’s “performance” on the criteria aggregated using a linear (i.e., additive) equation to produce the alternative’s “total score,” by which the alternatives are ranked. The steps involved in a MCDA process are explained, including an overview of methods for scoring alternatives on the criteria and weighting the criteria. The steps are: structuring the decision problem being addressed, specifying criteria, measuring alternatives’ performance, scoring alternatives on the criteria and weighting the criteria, applying the scores and weights to rank the alternatives, and presenting the MCDA results, including sensitivity analysis, to decision makers to support their decision-making. Arguments recently advanced against using MCDA for HTA and counterarguments are also considered. Finally, five questions associated with how MCDA for HTA is operationalized are discussed: Whose preferences are relevant for MCDA? Should criteria and weights be decision-specific or identical for repeated applications? How should cost or cost-effectiveness be included in MCDA? How can the opportunity cost of decisions be captured in MCDA? How can uncertainty be incorporated into MCDA?

Article

Drug companies are profit-maximizing entities, and profit is, by definition, revenue less cost. Here we review the impact of government policies that affect sales revenues earned on newly developed drugs and the impact of policies that affect the cost of drug development. The former policies include intellectual property rights, drug price controls, and the extension of public drug coverage to previously underinsured groups. The latter policies include regulations governing drug safety and efficacy, R&D tax credits, publicly funded basic research, and public funding for open drug discovery consortia. The latter policy, public funding of research consortia that seek to better understand the cellular pathways through which new drugs can ameliorate disease, appears very promising. In particular, a better understanding of human pathophysiology may be able to address the high failure rate of drugs undergoing clinical testing. Policies that expand market size by extending drug insurance to previously underinsured groups also appear to be effective at increasing drug R&D. Expansions of pharmaceutical intellectual property rights seem to be less effective, given the countervailing monopsony power of large public drug plans.