1-4 of 4 Results

  • Keywords: STEAM education x
Clear all

Article

The Maker Movement in Education  

Abigail Konopasky and Kimberly Sheridan

The Maker Movement is a broad international movement celebrating making with a wide range of tools and media, including an evolving array of new tools and processes for digital fabrication such as 3D printers and laser cutters. This article discusses who makers are in education, what that making entails, and where that making happens. akers are people of all ages who find digital and physical forums to share their products and processes. Educators and researchers in the Maker Movement in education are working to expand who makers are, providing critiques of traditional conceptions of maker identities and seeking to broaden participation in terms of race, gender, socioeconomic status, and ability status. Making entails a diversity of media, tools, processes and practices. Likewise, the Maker Movement in education purposefully transcends academic disciplines, drawing both on traditional academic subjects like engineering and math along with everyday life skills like sewing, carpentry and metalwork. Making happens across a variety of spaces where there is an educational focus, both informal (museums, community centers, libraries, and online) and formal (from K–12 to higher education, to teacher education). In these spaces, the specific goals and practices of the supporting organizations are woven together with those of the Maker Movement to support a range of learners and outcomes, including family inquiry, equity, access to technology, virtual community and support, social interaction, creativity, engineering education, and teacher candidate confidence. Maker education is often framed as a reaction to more “traditional” educational approaches and frequently involves the incorporation of making into STEM (science, technology, engineering, and math) and STEAM (science, technology, engineering, art, and math) approaches.

Article

STEM and STEAM Education in Australian K–12 Schooling  

Kimberley Pressick-Kilborn, Melissa Silk, and Jane Martin

STEM (science, technology, engineering, mathematics) education has become a global agenda, with schooling systems around the world in developed and developing countries seeking to incorporate STEM programs into their in-school and out-of-school curricula. While disciplinary integration has been common practice in primary (elementary) schooling for many decades, in the early 21st century the STEM education movement has promoted an increased focus on project- and problem-based learning across disciplines in secondary schools as well. Research suggests, however, that STEM education programs can face barriers in their implementation, often depending on whether they are designed to align with existing curriculum outcomes or whether they are developed as cocurricular programs. Challenges are also presented by the need for professional learning to equip teachers with new skills and knowledge in designing and delivering STEM education. In addition, some researchers and educators have argued for STEAM—integration of the arts in STEM education. For those concerned with school reform, a great strength of STEM and STEAM education approaches lies in the potential for transdisciplinarity. As such, new opportunities and possibilities for framing driving questions and addressing contemporary societal challenges are created. Two particular issues identified as critical are (a) the potential contribution of STEM education to creating a sustainable future, and (b) the importance of STEM education for social justice, in ensuring all children and young people have equitable access to learning opportunities.

Article

STEM Education, Economic Productivity, and Social Justice  

David E. Drew

Just as the factory assembly line replaced the farmer’s plow as the symbol of economic productivity at the beginning of the 19th century, so the computer and its software have replaced the assembly line at the beginning of the 21st century. In the United States, and in countries around the world, STEM (Science, Technology, Engineering and Mathematics) education has moved front and center in national discussions of both productivity and social justice. This article will include (a) a review of how the world of work has changed, with a special focus on the history and impact of digital technology since ca. 1970; (b) lessons from research about K-12 education—elementary, middle school, and secondary education—and about higher education; and (c) research about how to increase access to education, and facilitate achievement, for those who traditionally have been under-represented in STEM education. Rigorous research has demonstrated how psychological and sociological factors (e.g., self-concepts, instructor expectations, and social support) often make the difference between student success and failure. To fully contextualize consideration of STEM education, many advocate broadening STEM to STEAM by including the arts, or the arts and humanities, in building educational programs. In today’s world a young person who wishes to secure a better life for himself or herself would be well advised to study STEM. Furthermore, a nation that wishes to advance economically, while reducing the gap between the have’s and the have-not’s, should strengthen its STEM education infrastructure.

Article

STEM Education  

Stephen M. Ritchie

STEM education in schools has become the subject of energetic promotion by universities and policymakers. The mythical narrative of STEM in crisis has driven policy to promote STEM education throughout the world in order to meet the challenges of future workforce demands alongside an obsession with high-stakes testing for national and international comparisons as a proxy for education quality. Unidisciplinary emphases in the curriculum have failed to deliver on the goal to attract more students to pursue STEM courses and careers or to develop sophisticated STEM literacies. A radical shift in the curriculum toward integrated STEM education through multidisciplinary/ interdisciplinary/ transdisciplinary projects is required to meet future challenges. Project-based activities that engage students in solving real-world problems requiring multiple perspectives and skills that are authentically assessed by autonomous professional teachers are needed. Governments and non-government sponsors should support curriculum development with teachers, and their continuing professional development in this process. Integrating STEM with creative expression from the arts shows promise at engaging students and developing their STEM literacies. Research into the efficacy of such projects is necessary to inform authorities and teachers of possibilities for future developments. Foci for further research also are identified.