Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA,  ENVIRONMENTAL SCIENCE ( (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 23 February 2020

Summary and Keywords

Agricultural (tile) drainage enables agricultural production on millions of hectares of arable lands worldwide. Lands where drainage or irrigation (and sometimes both) are implemented, generate a disproportionately large share of global agricultural production compared to dry land or rain-fed agricultural lands and thus, these water management tools are vital for meeting the food demands of today and the future. Future food demands will likely require irrigation and drainage to be practiced on an even greater share of the world’s agricultural lands. The practice of agricultural drainage finds its roots in ancient societies and has evolved greatly to incorporate modern technologies and materials, including the modern drainage plow, plastic drainage pipe and tubing, laser and GPS-guided installation equipment, and computer-aided design tools. Although drainage brings important agricultural production and environmental benefits to poorly drained and salt-affected arable lands, it can also give rise to the transport of nutrients and other constituents to downstream waters. Other unwanted ecological and hydrologic environmental effects may also be associated with the practice. The goal of this article is to familiarize the reader with the practice of subsurface agricultural drainage, the history and extent of its application, and the benefits commonly associated with it. In addition, environmental effects associated with subsurface drainage including hydrologic and water quality effects are presented, and conservation practices for mitigating these unwanted effects are described. These conservation practices are categorized by whether they are implemented in-field (such as controlled drainage) versus edge-of-field (such as bioreactors). The literature cited and reviewed herein is not meant to be exhaustive, but seminal and key literary works are identified where possible.

Keywords: agricultural production, crop production, waterlogging, soil salinity, environment, hypoxia, nutrient loss, hydrology, best management practices, controlled drainage, bioreactor, saturated buffer

Access to the complete content on Oxford Research Encyclopedia of Environmental Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.