Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Environmental Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 04 March 2021

Biodiversity in Heterogeneous and Dynamic Landscapeslocked

  • Clélia SiramiClélia SiramiFrench National Institute for Agricultural Research

Summary

Although the concept of biodiversity emerged 30 years ago, patterns and processes influencing ecological diversity have been studied for more than a century. Historically, ecological processes tended to be considered as occurring in local habitats that were spatially homogeneous and temporally at equilibrium. Initially considered as a constraint to be avoided in ecological studies, spatial heterogeneity was progressively recognized as critical for biodiversity. This resulted, in the 1970s, in the emergence of a new discipline, landscape ecology, whose major goal is to understand how spatial and temporal heterogeneity influence biodiversity. To achieve this goal, researchers came to realize that a fundamental issue revolves around how they choose to conceptualize and measure heterogeneity. Indeed, observed landscape patterns and their apparent relationship with biodiversity often depend on the scale of observation and the model used to describe the landscape. Due to the strong influence of island biogeography, landscape ecology has focused primarily on spatial heterogeneity. Several landscape models were conceptualized, allowing for the prediction and testing of distinct but complementary effects of landscape heterogeneity on species diversity. We now have ample empirical evidence that patch structure, patch context, and mosaic heterogeneity all influence biodiversity. More recently, the increasing recognition of the role of temporal scale has led to the development of new conceptual frameworks acknowledging that landscapes are not only heterogeneous but also dynamic. The current challenge remains to truly integrate both spatial and temporal heterogeneity in studies on biodiversity. This integration is even more challenging when considering that biodiversity often responds to environmental changes with considerable time lags, and multiple drivers of global changes are interacting, resulting in non-additive and sometimes antagonistic effects. Recent technological advances in remote sensing, the availability of massive amounts of data, and long-term studies represent, however, very promising avenues to improve our understanding of how spatial and temporal heterogeneity influence biodiversity.

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription