Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA,  ENVIRONMENTAL SCIENCE ( (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 29 September 2020

Summary and Keywords

The tendency to represent natural processes as cycles—from Latin cyclus and Greek κυκλος—is undoubtedly rooted in the human observations of repeating or periodic phenomena. The oldest notions of the water cycle, as water cycling between the Earth, air, and back to earth, are mentioned in the Old Testament and by Greek philosophers, from the 900s to 300s bce. The life of plants, deriving their constituents from the soil and air, and returning them thereto, is a classic example of a cycling or recycling process. For chemical elements, the concept of their cycling developed gradually since 1875 to about 1950, as the knowledge of the parts of the Earth—its compartments or reservoirs—progressed and the flow of material between them became better understood.

The main “bioessential” chemical elements are carbon (C), nitrogen (N), phosphorus (P), oxygen (O), and hydrogen (H). These are represented in the mean composition of aquatic photosynthesizing organisms as the atomic abundance ratio C:N:P = 106:16:1 or as (CH2O)106(NH3)16(H3PO4). In land plants, estimates of mean composition vary from C:N:P = 510:4:1 to 2057:17:1. On land, the photosynthesizing organisms are much more efficient than in water by being able to incorporate more carbon atoms for each atom of phosphorus. The bioessential elements are coupled by the living organisms in the exogenic cycle, the processes at and near the Earth’s surface, and in the endogenic cycle of the processes that include subduction into the Earth’s interior and return to the surface. The main reservoirs of the bioessential elements are very different: although oxygen is the most abundant element in the Earth’s crust, most of it is locked in silicate minerals as SiO2, and the forms available to biogeochemical cycling are oxygen in water and, as a product of photosynthesis, as gas O2 in the atmosphere. Carbon is in the atmospheric reservoir of CO2 gas and dissolved in ocean and fresh waters. The main nitrogen reservoir is the molecular N2 in the atmosphere and oxidized and reduced nitrogen compounds in waters. Phosphorus occurs in the oxidized form of the phosphate-ion in crustal minerals, from where it is leached into the water.

The natural cycle of the bioessential elements has been greatly perturbed since the late 1700s by human industrial and agricultural activities, the period known as the Anthropocene epoch. The increase in CO2, CH4 and NOx emissions to the atmosphere from fossil-fuel burning and land-use changes has rapidly and strongly modified the chemical composition of the atmosphere. This change has affected the balance of solar radiation absorbed by the atmosphere—generally known as “climate change”—and the acidity of surface-ocean waters, referred to as “ocean acidification.” CO2 in water is a weak acid that dissolves carbonate minerals, biogenically and inorganically formed in the ocean, and it thus modifies the chemical composition of ocean water. Overall, a major anthropogenic perturbation of the biogeochemical cycles has been the faster increase in atmospheric concentration of CO2 than its removal from the atmosphere by plants, dissolution in the ocean, and uptake in mineral weathering.

Keywords: life-essential elements, cycle models, coupling of cycles, earth reservoir, atmospheric CO2, greenhouse gas, climate change, ocean acidification, carbon storage

Access to the complete content on Oxford Research Encyclopedia of Environmental Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.